
Snakebids
Release 0.13.2.dev2+816f114

Ali R. Khan

May 14, 2024

USER GUIDE

1 Features 3

2 Installation 5

3 Usage 7

4 Contributing 9

5 License 11

6 Acknowledgements 13

7 Relevant papers 15

Python Module Index 83

Index 85

i

ii

Snakebids, Release 0.13.2.dev2+816f114

Warning: Snakebids is migrating to a more robust, extensible API! If you’re coming from pre-v0.8 code, check
out the migration guide to ensure your workflow is up-to-date.

Snakebids is a Python package that extends Snakemake, enabling users to create reproducible, scalable pipelines for
processing neuroimaging data in the BIDS format. Snakebids workflows expose a CLI that conforms to the BIDS App
guidelines.

USER GUIDE 1

https://github.com/khanlab/snakebids/actions/workflows/test.yml?query=branch%3Amain
https://codecov.io/gh/khanlab/snakebids
https://snakebids.readthedocs.io/en/stable/?badge=stable
https://pypi.org/project/snakebids/
https://pypi.org/project/snakebids/
https://zenodo.org/badge/latestdoi/309495236
https://opensource.org/licenses/MIT
https://snakemake.github.io
https://bids.neuroimaging.io
https://bids-apps.neuroimaging.io

Snakebids, Release 0.13.2.dev2+816f114

2 USER GUIDE

CHAPTER

ONE

FEATURES

Snakebids includes all of the features of Snakemake, including flexible configuration, parallel execution, and
Docker/Singularity support, plus:

• Built-in support for BIDS datasets: Seamless workflow functionality with a wide range of BIDS datasets,
accomodating various levels of complexity.

• BIDS App Creation: Provide command-line invocations of your workflow following BIDS App guidelines,
ensuring reproducibility and enhancing accessibility of your workflow.

• BIDS Path Construction: Easy, flexible construction of valid BIDS paths following BIDS guiding principles,
promoting data organization and sharing.

• Plugin System: Extend the functionality of Snakebids by creating and using plugins to meet your workflow’s
needs.

• Pybids Querying: Leverages Pybids to efficiently retrieve specific data required.

3

https://bids-standard.github.io/pybids/

Snakebids, Release 0.13.2.dev2+816f114

4 Chapter 1. Features

CHAPTER

TWO

INSTALLATION

Snakebids can be installed using pip:

pip install snakebids

5

Snakebids, Release 0.13.2.dev2+816f114

6 Chapter 2. Installation

CHAPTER

THREE

USAGE

To create and run a Snakebids workflow, you need to:

1. Create a Snakefile: Define the steps of your workflow, including input / output files, processing rules, and
dependencies

2. Create a configuration file: Customize workflow behaviour using a YAML configuration file. Specify input /
output directories and custom workflow parameters.

3. Run the pipeline: Execute the Snakebids pipeline by invoking the BIDS App CLI or via Snakemake executable.

For detailed instructions and examples, please refer to the documentation.

7

https://snakebids.readthedocs.io/en/stable/index.html

Snakebids, Release 0.13.2.dev2+816f114

8 Chapter 3. Usage

CHAPTER

FOUR

CONTRIBUTING

Snakebids is an open-source project, and contributions are welcome! If you have any bug reports, feature requests, or
improvements, please submit them to the issues page.

To contribute, first clone the Github repository. Snakebids dependencies are managed with Poetry (version 1.2 or
higher). Please refer to the poetry website for installation instructions.

Note: Snakebids makes use of Poetry’s dynamic versioning. To see a version number on locally installed Snakebids
versions, you will have to also install poetry-dynamic-versioning plugin to your poetry installation (`poetry self
add “poetry-dynamic-versioning[plugin]”). This is not required for contribution.

Following installation of Poetry, the development can be set up by running the following commands:

poetry install
poetry run poe setup

Snakebids uses poethepoet as a task runner. You can see what commands are available by running:

poetry run poe

Tests are done with pytest and can be run via:

poetry run poe test

Additionally, Snakebids uses pre-commit hooks (installed via the poe setup command above) to lint and format code
(we use black, isort and ruff. By default, these hooks are run on every commit. Please be sure they all pass before
making a PR.

9

https://github.com/khanlab/snakebids
https://python-poetry.org/docs/master/#installation
https://github.com/nat-n/poethepoet
https://github.com/psf/black
https://github.com/PyCQA/isort
https://beta.ruff.rs/docs/

Snakebids, Release 0.13.2.dev2+816f114

10 Chapter 4. Contributing

CHAPTER

FIVE

LICENSE

Snakebids is distributed under the MIT License.

11

Snakebids, Release 0.13.2.dev2+816f114

12 Chapter 5. License

CHAPTER

SIX

ACKNOWLEDGEMENTS

Snakebids extends the Snakemake workflow management system and follows the guidelines outlined by the BIDS
specification.

13

Snakebids, Release 0.13.2.dev2+816f114

14 Chapter 6. Acknowledgements

CHAPTER

SEVEN

RELEVANT PAPERS

• Mölder F, Jablonski KP, Letcher B et al. Sustainable data analysis with Snakemake [version 2; peer review: 2
approved]. F1000Research. 2021. doi: 10.12688/f1000research.29032.2

7.1 Why use snakebids?

Snakebids makes it easy to use Snakemake to break down a neuroimaging workflow into its component steps, while
still providing a the standard command line interface of a BIDS app.

7.2 Tutorial

7.2.1 Getting started

In this example we will make a workflow to smooth bold scans from a bids dataset.

We will start by creating a simple rule, then make this more generalizable in each step. To begin with, this is the
command we are using to smooth a bold scan.

fslmaths ../bids/sub-001/func/sub-001_task-rest_run-1_bold.nii.gz -s 2.12 results/sub-
→˓001/func/sub-001_task-rest_run-1_fwhm-5mm_bold.nii.gz

This command performs smoothing with a sigma=2.12 Gaussian kernel (equivalent to 5mm
FWHM, with sigma=fwhm/2.355), and saves the smoothed file as results/sub-001/func/
sub-001_task-rest_run-1_fwhm-5mm_bold.nii.gz.

Installation

Start by making a new directory:

$ mkdir snakebids-tutorial
$ cd snakebids-tutorial

Check your python version to make sure you have at least version 3.7 or higher:

$ python --version
Python 3.10.0

Make a new virtual environment:

15

https://doi.org/10.12688/f1000research.29032.2

Snakebids, Release 0.13.2.dev2+816f114

$ python -m venv .venv
$ source .venv/bin/activate

And use pip to install snakebids:

$ pip install snakebids

In our example, we’ll be using the fslmaths tool from FSL. If you want to actually run the workflow, you’ll need to
have FSL installed. This is not actually necessary to follow along the tutorial however, as we can use “dry runs” to see
what snakemake would do if FSL were installed.

Getting the dataset

We will be running the tutorial on a test dataset consisting only of empty files. We won’t actually be able to run our
workflow on it (fslmathswill fail), but as mentioned above, we can use dry runs to see would would normally happen.

If you wish to follow along using the same dataset, currently the easiest way is to start by cloning snakebids:

$ git clone https://github.com/khanlab/snakebids.git

Then copy the following directory:

$ cp -r snakebids/docs/tutorial/bids ./data

It’s also perfectly possible (and probably better!) to try the tutorial on your own dataset. Just adjust any paths below so
that they match your data!

7.2.2 Part I: Snakemake

Step 0: a basic non-generic workflow

In this rule, we start by creating a rule that is effectively hard-coding the paths for input and output to re-create the
command as above.

In this rule we have an input: section for input files, a params: section for non-file parameters, and an output:
section for output files. The shell section is used to build the shell command, and can refer to the input, output or
params using curly braces. Note that any of these can also be named inputs, but we have only used this for the sigma
parameter in this case.

Listing 1: Snakefile

1 rule smooth:
2 input:
3 'data/sub-001/func/sub-001_task-rest_run-1_bold.nii.gz'
4 params:
5 sigma = '2.12'
6 output:
7 'results/sub-001/func/sub-001_task-rest_run-1_fwhm-5mm_bold.nii.gz'
8 shell:
9 'fslmaths {input} -s {params.sigma} {output}'

With this rule in our Snakefile, we can then run snakemake -np to execute a dry-run of the workflow. Here the -n
specifies dry-run, and the -p prints any shell commands that are to be executed.

16 Chapter 7. Relevant papers

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Snakebids, Release 0.13.2.dev2+816f114

When we invoke snakemake, it uses the first rule in the snakefile as the target rule. The target rule is what snakemake
uses as a starting point to determine what other rules need to be run in order to generate the inputs. We’ll learn a bit
more about that in the next step.

So far, we just have a fancy way of specifying the exact same command we started with, so there is no added benefit
(yet). But we will soon add to this rule to make it more generalizable.

Step 1: adding wildcards

First step to make the workflow generalizeable is to replace the hard-coded identifiers (e.g. the subject, task and run)
with wildcards.

In the Snakefile, we can replace sub-001 with sub-{subject}, and so forth for task and run. Now the rule is generic
for any subject, task, or run.

Listing 2: Snakefile

1 rule smooth:
2 input:
3 'data/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_bold.nii.gz'
4 params:
5 sigma = '2.12'
6 output:
7 'results/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_fwhm-5mm_bold.

→˓nii.gz'
8 shell:
9 'fslmaths {input} -s {params.sigma} {output}'

However, if we try to execute (dry-run) the workflow as before, we get an error. This is because the target rule now
has wildcards in it. So snakemake is unable to determine what rules need to be run to generate the inputs, since the
wildcards can take any value.

So for the time being, we will make use of the snakemake command-line argument to specify targets, and specify
the file we want generated from the command-line, by running:

$ snakemake -np results/sub-001/func/sub-001_task-rest_run-1_fwhm-5mm_bold.nii.gz

We can now even try running this for another subject by changing the target file.

$ snakemake -np results/sub-002/func/sub-002_task-rest_run-1_fwhm-5mm_bold.nii.gz

Try using a subject that doesn’t exist in our bids dataset, what happens?

Now, try changing the output smoothing value, e.g. fwhm-10mm, and see what happens. As expected the command
still uses a smoothing value of 2.12, since that has been hard-coded, but we will see how to rectify this in the next step.

7.2. Tutorial 17

Snakebids, Release 0.13.2.dev2+816f114

Step 2: adding a params function

As we noted, the sigma parameter needs to be computed from the FWHM. We can use a function to do this. Functions
can be used for any input or params, and must take wildcards as an input argument, which provides a mechanism
to pass the wildcards (determined from the output file) to the function.

We can thus define a simple function that returns a string representing FWHM/2.355 as follows:

Listing 3: Snakefile

1 def calc_sigma_from_fwhm(wildcards):
2 return f'{float(wildcards.fwhm)/2.355:0.2f}'

Note 1: We now have to make the fwhm in the output filename a wildcard, so that it can be passed to the function (via
the wildcards object).

Note 2: We have to convert the fwhm to float, since all wildcards are always strings (since they are parsed from the
output filename).

Once we have this function, we can replace the hardcoded 2.12 with the name of the function:

Listing 4: Snakefile

6 'data/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_bold.nii.gz'
7 params:
8 sigma = calc_sigma_from_fwhm
9 output:

Here is the full Snakefile:

Listing 5: Snakefile

1 def calc_sigma_from_fwhm(wildcards):
2 return f'{float(wildcards.fwhm)/2.355:0.2f}'
3

4 rule smooth:
5 input:
6 'data/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_bold.nii.gz'
7 params:
8 sigma = calc_sigma_from_fwhm
9 output:

10 'results/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_fwhm-{fwhm}mm_
→˓bold.nii.gz'

11 shell:
12 'fslmaths {input} -s {params.sigma} {output}'

Now try running the workflow again, with fwhm-5 as well as fwhm-10.

18 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

Step 3: adding a target rule

Now we have a generic rule, but it is pretty tedious to have to type out the filename of each target from the command-line
in order to use it.

This is where target rules come in. If you recall from earlier, the first rule in a workflow is interpreted as the target rule,
so we just need to add a dummy rule to the Snakefile that has all the target files as inputs. It is a dummy rule since it
doesn’t have any outputs or any command to run itself, but snakemake will take these input files, and determine if any
other rules in the workflow can generate them (considering any wildcards too).

In this case, we have a BIDS dataset with two runs (run-1, run-2), and suppose we wanted to compute smoothing with
several different FWHM kernels (5,10,15,20). We can thus make a target rule that has all these resulting filenames as
inputs.

A very useful function in snakemake is expand(). It is a way to perform array expansion to create lists of strings (input
filenames).

Listing 6: Snakefile

1 rule all:
2 input:
3 expand(
4 'results/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_fwhm-{fwhm}

→˓mm_bold.nii.gz',
5 subject='001',
6 task='rest',
7 run=[1,2],
8 fwhm=[5,10,15,20]
9)

10

11

Now, we don’t need to specify any targets from the command-line, and can just run:

$ snakemake -np

The entire Snakefile for reference is:

Listing 7: Snakefile

1 rule all:
2 input:
3 expand(
4 'results/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_fwhm-{fwhm}

→˓mm_bold.nii.gz',
5 subject='001',
6 task='rest',
7 run=[1,2],
8 fwhm=[5,10,15,20]
9)

10

11

12 def calc_sigma_from_fwhm(wildcards):
13 return f'{float(wildcards.fwhm)/2.355:0.2f}'
14

15 rule smooth:
(continues on next page)

7.2. Tutorial 19

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

16 input:
17 'data/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_bold.nii.gz'
18 params:
19 sigma = calc_sigma_from_fwhm,
20 output:
21 'results/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_fwhm-{fwhm}mm_

→˓bold.nii.gz'
22 shell:
23 'fslmaths {input} -s {params.sigma} {output}'

Step 4: adding a config file

We have a functional workflow, but suppose you need to configure or run it on another bids dataset with different
subjects, tasks, runs, or you want to run it for different smoothing values. You have to actually modify your workflow
in order to do this.

It is a better practice instead to keep your configuration variables separate from the actual workflow. Snakemake
supports this by allowing for a separate config file (can be YAML or JSON, here we will use YAML), where we can
store any dataset specific configuration. Then to apply it for a new purpose, you can simply update the config file.

To do this, we simply add a line to our workflow:

Listing 8: Snakefile

1 configfile: 'config.yml'
2

3 rule all:
4 input:

Snakemake will then handle reading it in, and making the configuration variables available via dictionary called
config.

In our config file, we will add variables for everything in the target rule expand():

Listing 9: config.yaml

1 subjects:
2 - '001'
3

4 tasks:
5 - rest
6

7 runs:
8 - 1
9 - 2

10

11 fwhm:
12 - 5
13 - 10
14 - 15
15 - 20
16

(continues on next page)

20 Chapter 7. Relevant papers

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

17

18 in_bold: 'data/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_bold.nii.gz'

In our Snakefile, we then need to replace these hardcoded values with config[key]. The entire updated Snakefile is
shown here:

Listing 10: Snakefile

1 configfile: 'config.yml'
2

3 rule all:
4 input:
5 expand(
6 'results/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_fwhm-{fwhm}

→˓mm_bold.nii.gz',
7 subject=config['subjects'],
8 task=config['tasks'],
9 run=config['runs'],

10 fwhm=config['fwhm']
11)
12

13

14 def calc_sigma_from_fwhm(wildcards):
15 return f'{float(wildcards.fwhm)/2.355:0.2f}'
16

17 rule smooth:
18 input:
19 config['in_bold']
20 params:
21 sigma = calc_sigma_from_fwhm
22 output:
23 'results/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_fwhm-{fwhm}mm_

→˓bold.nii.gz'
24 shell:
25 'fslmaths {input} -s {params.sigma} {output}'

After these changes, the workflow should still run just like the last step, but now you can make any changes via the
config file.

7.2.3 Part II: Snakebids

Now that we have a fully functioning and generic Snakemake workflow, let’s see what Snakebids can add.

7.2. Tutorial 21

Snakebids, Release 0.13.2.dev2+816f114

Step 5: the bids() function

The first thing we can make use of is the bids() function. This provides an easy way to generate bids filenames. This
is especially useful when defining output files in your workflow and you have many bids entities.

In our existing workflow, this was our output file:

Listing 11: Snakefile

22 output:
23 'results/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_fwhm-{fwhm}mm_

→˓bold.nii.gz'

To create the same path using bids(), we just need to specify the root directory (results), all the bids tags (subject,
task, run, fwhm), and the suffix (which includes the extension):

Listing 12: Snakefile

31 output:
32 bids(
33 root='results',
34 subject='{subject}',
35 task='{task}',
36 run='{run}',
37 fwhm='{fwhm}',
38 suffix='bold.nii.gz',
39)

Note: To make a snakemake wildcard, we wrapped the 'value' in curly braces (e.g. '{value}').

Note: The entities you supply in the bids() function do not have to be in the BIDS specification, e.g. fwhm is not in
the spec. But if you do use entities that are in the BIDS specification, snakebids will ensure they go in the correct order
(e.g. sub_*-ses_*-run_*...). Non-standard entities will be added to the end of the path, just before the suffix, in
the order they were defined.

The Snakefile with the output filename replaced (in both rules) is below:

Listing 13: Snakefile

1 from snakebids import bids
2

3 configfile: 'config.yml'
4

5 rule all:
6 input:
7 expand(
8 bids(
9 root='results',

10 subject='{subject}',
11 task='{task}',
12 run='{run}',
13 fwhm='{fwhm}',

(continues on next page)

22 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

14 suffix='bold.nii.gz'
15),
16 subject=config['subjects'],
17 task=config['tasks'],
18 run=config['runs'],
19 fwhm=config['fwhm'],
20)
21

22

23 def calc_sigma_from_fwhm(wildcards):
24 return f'{float(wildcards.fwhm)/2.355:0.2f}'
25

26 rule smooth:
27 input:
28 config['in_bold']
29 params:
30 sigma = calc_sigma_from_fwhm
31 output:
32 bids(
33 root='results',
34 subject='{subject}',
35 task='{task}',
36 run='{run}',
37 fwhm='{fwhm}',
38 suffix='bold.nii.gz',
39)
40 shell:
41 'fslmaths {input} -s {params.sigma} {output}'

Step 6: parsing the BIDS dataset

So far, we have had to manually enter the path to input bold file in the config file, and also specify what subjects, tasks,
and runs we want processed. Can’t we use the fact that we have a BIDS dataset to automate this a bit more?

With Snakemake, there are ways to glob the files to figure out what wildcards are present (e.g. glob_wildcards()),
however, this is not so straightforward with BIDS, since filenames in BIDS often have optional components. E.g. some
datasets may have a ses tag/sub-directory, and others do not. Also there are often optional user-defined values, such
as the acq tag, that a workflow in most cases should ignore. Thus, the input that we use in our workflow, in_bold,
that has wildcards to be generic, would need to be altered for any given BIDS dataset, along with the workflow itself,
making this automated BIDS parsing difficult within Snakemake.

Snakebids lets you parse a bids dataset (using pybids under the hood) using a configfile that contains the required
wildcards, along with data structures that specify all the wildcard values for all the subjects. This, in combination with
the bids() function, can allow one to make snakemake workflows that are compatible with any general bids dataset.

To add this parsing to the workflow, we call the generate_inputs() function before our rules are defined, and pass
along some configuration data to specify the location of the bids directory (bids_dir) and the inputs we want to parse
for the workflow (pybids_inputs). The function returns a BidsDataset, which we’ll assign to a variable called
inputs:

7.2. Tutorial 23

https://snakemake.readthedocs.io/en/stable/project_info/faq.html#glob-wildcards
https://bids-standard.github.io/pybids/index.html

Snakebids, Release 0.13.2.dev2+816f114

Listing 14: Snakefile

1 from snakebids import bids, generate_inputs
2

3 configfile: 'config.yml'
4

5 inputs = generate_inputs(
6 bids_dir=config['bids_dir'],
7 pybids_inputs=config['pybids_inputs'],
8)
9

Note: Snakebids has transitioned to a new format for generate_inputs(). To get access to the old dict style return,
the use_bids_inputs parameter must be set to False. A tutorial for the old syntax can be found on the v0.5.0 docs.

The config variables we need pre-defined are as follows::

Listing 15: config.yml

1 bids_dir: 'data'
2

3 fwhm:
4 - 5
5 - 10
6 - 15
7 - 20
8

9 pybids_inputs:
10 bold:
11 filters:
12 suffix: 'bold'
13 extension: '.nii.gz'
14 datatype: 'func'
15 wildcards:
16 - subject
17 - session
18 - acquisition
19 - task
20 - run

The pybids_inputs dict defines what types of inputs the workflow can make use of (i.e. the top-level keys, bold in
this case), and for each input, how to filter for them (i.e. the filters dict), and what BIDS entities to replace with
wildcards in the snakemake workflow (i.e. the wildcards dict).

Note: The filters dict is passed directly to the get() function in pybids, and thus is quite customizable.

Note: Entries in the wildcards list do not have to be in your bids dataset, but if they are, then they will be converted
into wildcards (i.e. task-{task}) if they are in the filenames. The names for these also correspond with pybids (e.g.
acquisition maps to acq).

24 Chapter 7. Relevant papers

https://snakebids.readthedocs.io/en/v0.5.0/tutorial/tutorial.html#part-ii-snakebids
https://bids-standard.github.io/pybids/generated/bids.layout.BIDSLayout.html#bids.layout.BIDSLayout
https://bids-standard.github.io/pybids/index.html

Snakebids, Release 0.13.2.dev2+816f114

The BidsDataset class returned by generate_inputs() summarizes the wildcards found in your bids dataset
and has parameters to plug those wildcards into your workflow. To investigate it, add a print statement following
generate_inputs(...):

Listing 16: Snakefile

1 from snakebids import bids, generate_inputs
2

3 configfile: 'config.yml'
4

5 inputs = generate_inputs(
6 bids_dir=config['bids_dir'],
7 pybids_inputs=config['pybids_inputs'],
8)
9

10 print(inputs)
11

Run the workflow:

$ snakemake -nq
BidsDataset({

"bold": BidsComponent(
name="bold",
path="/path/to/data/sub-{subject}/func/sub-{subject}_task-{task}_run-{run}_bold.

→˓nii.gz",
zip_lists={

"subject": ["001", "001"],
"task": ["rest", "rest"],
"run": ["1", "2"],

},
),

})

As you can see, BidsDataset is just a special kind of dict. Its keys refer to the names of the input types you specified
in the config file (in pybids_inputs). You can test this by running print(list(inputs.keys)). Each value
contains an object summarizing that input type. We refer to these input types, and the objects that describe them, as
BidsComponents.

Each BidsComponent has three primary attributes. .name is the name of the component, this will be the same as the
dictionary key in the dataset. .path is the generic path of the component. Note the wildcards: {subject}, {task},
and {run}. These wildcards can be substituted for values that will uniquely define each specific path. .zip_lists
contains these unique values. It’s a simple dict whose keys are bids entities and whose values are lists of entity-
values. Note the tabular format that printed in your console: each of the columns of this “table” correspond to the
entity-values of one specific file.

Notice that inputs['bold'].path is the same as the path we wrote under in_bold: in our config.yaml file in step
4. In fact, we can go ahead and replace config['in_bold'] in our Snakemake file with inputs['bold'].path
and delete in_bold from config.yaml.

Listing 17: Snakefile

32 rule smooth:
33 input:
34 inputs['bold'].path

(continues on next page)

7.2. Tutorial 25

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

35 params:

Step 7: using input wildcards

BidsComponent.path already grants us a lot of flexibility, but we can still do more! In addition to the three main
attributes of BidsComponents already described, the class offers a number of special properties we can use in our
workflows. First, we’ll look at BidsComponent.wildcards. This is a dict that maps each entity to the brace-wrapped
{wildcards} we specified in pybids_config. If you printed this value in our test workflow, it would look like this:

inputs['bold'].wildcards == {
'subject': '{subject}',
'task': '{task}',
'run': '{run}'

}

This is super useful when combined with bids(), as we can use the keyword expansion
**inputs["<input_name>"].wildcards to set all the wildcard parameters to the bids() function. Thus,
we can make our workflow even more general, by replacing this:

Listing 18: Snakefile

32 rule smooth:
33 input:
34 inputs['bold'].path
35 params:
36 sigma = calc_sigma_from_fwhm
37 output:
38 bids(
39 root='results',
40 subject='{subject}',
41 task='{task}',
42 run='{run}',
43 fwhm='{fwhm}',
44 suffix='bold.nii.gz'
45)
46 shell:
47 'fslmaths {input} -s {params.sigma} {output}'

with this:

Listing 19: Snakefile

27 rule smooth:
28 input:
29 inputs['bold'].path
30 params:
31 sigma = calc_sigma_from_fwhm
32 output:
33 bids(
34 root='results',
35 fwhm='{fwhm}',
36 suffix='bold.nii.gz',

(continues on next page)

26 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

37 **inputs['bold'].wildcards
38)
39 shell:
40 'fslmaths {input} -s {params.sigma} {output}'

This effectively ensures that any bids entities from the input filenames (that are listed as pybids wildcards) get carried
over to the output filenames. Note that we still have the ability to add on additional entities, such as fwhm here, and set
the root directory and suffix.

Finally, we can use our BidsComponents to easily expand over the entity values found in our dataset using
BidsComponent.expand(). This method gets used instead of the snakemake expand() function:

Listing 20: Snakefile

10 rule all:
11 input:
12 inputs['bold'].expand(
13 bids(
14 root='results',
15 fwhm='{fwhm}',
16 suffix='bold.nii.gz',
17 **inputs['bold'].wildcards
18),
19 fwhm=config['fwhm'],
20)
21

22

Note: BidsComponent.expand() still uses snakemake’s expand() under the hood, but applies extra logic to ensure
only entity groups actually found in your dataset are used. If need to expand over additional wildcards, just add them
as keyword args. They’ll expand over every possible combination, just like snakemake’s expand().

For reference, here is the updated config file and Snakefile after these changes:

Listing 21: config.yml

1 bids_dir: 'data'
2

3 fwhm:
4 - 5
5 - 10
6 - 15
7 - 20
8

9 pybids_inputs:
10 bold:
11 filters:
12 suffix: 'bold'
13 extension: '.nii.gz'
14 datatype: 'func'
15 wildcards:
16 - subject

(continues on next page)

7.2. Tutorial 27

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

17 - session
18 - acquisition
19 - task
20 - run

Listing 22: Snakefile

1 from snakebids import bids, generate_inputs
2

3 configfile: 'config.yml'
4

5 inputs = generate_inputs(
6 bids_dir=config['bids_dir'],
7 pybids_inputs=config['pybids_inputs'],
8)
9

10 rule all:
11 input:
12 inputs['bold'].expand(
13 bids(
14 root='results',
15 fwhm='{fwhm}',
16 suffix='bold.nii.gz',
17 **inputs['bold'].wildcards
18),
19 fwhm=config['fwhm'],
20)
21

22

23 def calc_sigma_from_fwhm(wildcards):
24 return f'{float(wildcards.fwhm)/2.355:0.2f}'
25

26

27 rule smooth:
28 input:
29 inputs['bold'].path
30 params:
31 sigma = calc_sigma_from_fwhm
32 output:
33 bids(
34 root='results',
35 fwhm='{fwhm}',
36 suffix='bold.nii.gz',
37 **inputs['bold'].wildcards
38)
39 shell:
40 'fslmaths {input} -s {params.sigma} {output}'

28 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

Step 8: creating a command-line executable

Now that we have pybids parsing to dynamically configure our workflow inputs based on our BIDS dataset, we are
ready to turn our workflow into a BIDS App. BIDS Apps are command-line apps with a standardized interface (e.g.
three required positional arguments: bids_directory, output_directory, and analysis_level).

We do this in snakebids by creating a python script containing a bidsapp.app built with the Snakemake integration
plugin SnakemakeBidsApp. An example of this run.py script is shown below.

Listing 23: run.py

1 #!/usr/bin/env python3
2 from pathlib import Path
3

4 from snakebids import bidsapp, plugins
5

6 app = bidsapp.app(
7 [
8 plugins.SnakemakeBidsApp(Path(__file__).resolve().parent),
9]

10)
11

12 if __name__ == "__main__":
13 app.run()

This creates a bidsapp with all the standard arguments. The usage will look something like this:

./run.py INPUT_DATASET OUTPUT_DATASET [participant|group] [--derivatives] [--participant-
→˓label LABEL...]

A more complete description of bidsapp usage can be found at Running Snakebids.

Additional argument can be added using the config.yml. For instance, we can turn our fwhm setting into a CLI
parameter with the following:

Listing 24: config.yml

24 parse_args:
25 --fwhm:
26 help: >
27 Set the full-width-half-maximum values that should be used for smoothing.
28 type: int
29 nargs: +
30 default:
31 - 5
32 - 10
33 - 15
34 - 20

Snakebids uses the argparse module, and each entry in this parse_args dict becomes a call to add_argument()
from argparse.ArgumentParser. When you run the workflow, snakebids adds the named argument values to the
config dict, so your workflow can make use of it as if you had manually added the variable to your configfile. See
parse_args for more details.

In the above example, snakebids will automatically insert a key called fwhm into the snakemake config containing the
values provided from the command line (or the default, if no values are provided).

7.2. Tutorial 29

http://bids-apps.neuroimaging.io/
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Snakebids, Release 0.13.2.dev2+816f114

The analysis_level positional argument can also be modified in the config. The available levels are in
an analysis_levels list in the config. Specific snakemake targets can be mapped to these levels in the
targets_by_analysis_level dict:

Listing 25: config.yml

17 analysis_levels:
18 - participant
19

20 targets_by_analysis_level:
21 participant:
22 - '' # if '', then the first rule is run

Note: since we specified a '' for the target rule, no target rule will be specified, so snakemake will just default to the
first rule in the workflow.

Make the run.py script executable (chmod a+x run.py) and try running it now.

The updated configfile is here (the Snakefile did not change in this step):

Listing 26: config.yml

1 bids_dir: 'data'
2

3

4 pybids_inputs:
5 bold:
6 filters:
7 suffix: 'bold'
8 extension: '.nii.gz'
9 datatype: 'func'

10 wildcards:
11 - subject
12 - session
13 - acquisition
14 - task
15 - run
16

17 analysis_levels:
18 - participant
19

20 targets_by_analysis_level:
21 participant:
22 - '' # if '', then the first rule is run
23

24 parse_args:
25 --fwhm:
26 help: >
27 Set the full-width-half-maximum values that should be used for smoothing.
28 type: int
29 nargs: +
30 default:
31 - 5
32 - 10
33 - 15

(continues on next page)

30 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

34 - 20

7.3 Bids Function

The bids function generates a BIDS-like filepath corresponding to its keyword arguments. The generated filepath has
the form:

[root]/[sub-{subject}]/[ses-{session]/[prefix]_[sub-{subject}]_[ses-{session}]_[{key}-
→˓{val}_ ...]_[suffix]

Use cases of the bids function include, at simplest, replacing a hard-coded BIDS file with an invocation of the bids
function, so

"data/sub-01/ses-01/func/sub-01_ses-01_task-rest_acq-01_run-1_bold.nii.gz"

could become

bids(
root="data",
subject="01",
session="01",
datatype="func",
task="rest",
acq="01",
run="1",
suffix="bold.nii.gz"

)

If you wanted to specify that a rule should run on a BIDS file from any subject, session, acquisition, task, and run, you
could change those keyword arguments to be snakemake wildcards:

bids(
root="data",
subject="{subject}",
session="{session}",
datatype="func",
task="{task}",
acq="{acq}",
run="{run}",
suffix="bold.nii.gz"

)

Using the subject and session keywords as wildcards is common enough that snakebids pre-populates a config variable
(subj_wildcards) with these wildcards, allowing the bids call to look like the following:

bids(
root="data",
datatype="func",
task="{task}",
acq="{acq}",
run="{run}",

(continues on next page)

7.3. Bids Function 31

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

suffix="bold.nii.gz",
**inputs.subj_wildcards

)

Now if you want to process all inputs of a given form regardless of how their wildcards resolve, you can use
BidsComponent.expand to expand over the entity-values found in your input dataset. As an example, to specify
the output of a rule that preprocesses BOLD images (as specified in the example configuration), the following would
resolve the subject, session, acquisition, task, and run wildcards:

inputs["bold"].expand(
bids(

root="output",
datatype="func",
desc="preproc",
acq="{acq}",
task="{task}",
run="{run}",
**inputs.subj_wildcards

),
)

7.3.1 Specs

The structure of the built path is based on the currently active BIDS spec. More information can be found on the specs
page.

7.4 Bids Apps

7.4.1 Configuration

Snakebids is configured with a YAML (or JSON) file that extends the standard snakemake config file with variables
that snakebids uses to parse an input BIDS dataset and expose the snakebids workflow to the command line.

Config Variables

pybids_inputs

A dictionary that describes each type of input you want to grab from an input BIDS dataset. Snakebids will parse your
dataset with generate_inputs(), converting each input type into a BidsComponent. The value of each item should
be a dictionary with keys filters and wildcards.

32 Chapter 7. Relevant papers

https://snakemake.readthedocs.io/en/stable/snakefiles/configuration.html#standard-configuration

Snakebids, Release 0.13.2.dev2+816f114

Filters

The value of filters should be a dictionary where each key corresponds to a BIDS entity, and the value specifies
which values of that entity should be grabbed. The dictionary for each input is sent to the PyBIDS’ get() function .
filters can be set according to a few different formats:

• string: specifies an exact value for the entity. In the following example:

1 pybids_inputs:
2 bold:
3 filters:
4 suffix: 'bold'
5 extension: '.nii.gz'
6 datatype: 'func'

the bold component would match any paths under the func/ datatype folder, with the suffix bold and the exten-
sion .nii.gz.

sub-xxx/.../func/sub-xxx_ses-xxx_..._bold.nii.gz

• boolean: constrains presence or absence of the entity without restricting its value. False requires that the entity
be absent, while True requires the entity to be present, regardless of value.

1 pybids_inputs:
2 derivs:
3 filters:
4 datatype: 'func'
5 desc: True
6 acquisition: False

The above example selects all paths in the func/ datatype folder that have a _desc- entity but do not have the
_acq- entity.

• list: Specify multiple string or boolean filters. Any path matching any one of the filters will be selected. Using
False as one of the filters allows the entity to optionally be absent in addition to matching one of the string
filters. Using True along with text is redundant, as True will cause any value to be selected. Using True with
False is equivalent to not providing the filter at all.

These filters:

1 pybids_inputs:
2 derivs:
3 filters:
4 acquisition:
5 - False
6 - MPRAGE
7 - MP2RAGE

would select all of the following paths:

sub-001/ses-1/anat/sub-001_ses-001_acq-MPRAGE_run-1_T1w.nii.gz
sub-001/ses-1/anat/sub-001_ses-001_acq-MP2RAGE_run-1_T1w.nii.gz
sub-001/ses-1/anat/sub-001_ses-001_run-1_T1w.nii.gz

• To use regex for filtering, use an additional subkey set either to match or search, depending on which regex
method you wish to use. This key may be set to any one of the above items (str, bool, or list). Only one such

7.4. Bids Apps 33

https://bids-standard.github.io/pybids/generated/bids.layout.BIDSLayout.html#bids.layout.BIDSLayout
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/re.html#re.match
https://docs.python.org/3/library/re.html#re.search

Snakebids, Release 0.13.2.dev2+816f114

key may be used.

These filters:

1 pybids_inputs:
2 derivs:
3 filters:
4 suffix:
5 search: '[Tt]1'
6 acquisition:
7 match: MP2?RAGE

would select all of the following paths:

sub-001/ses-1/anat/sub-001_ses-001_acq-MPRAGE_run-1_T1.nii.gz
sub-001/ses-1/anat/sub-001_ses-001_acq-MP2RAGE_run-1_t1w.nii.gz
sub-001/ses-1/anat/sub-001_ses-001_acq-MPRAGE_run-1_qT1w.nii.gz

Note: match and search are both filtering methods. In addition to these, get is also a valid filtering method and may
be used as the subkey for a filter. However, this is equivalent to directly providing the desired filter without a subkey:

1 pybids_inputs:
2 derivs:
3 filters:
4 suffix:
5 get: T1w
6

7 # is the same as
8 pybids_inputs:
9 derivs:

10 filters:
11 suffix: T1w

In other words, get is the default filtering method.

Wildcards

The value of wildcards should be a list of BIDS entities. Snakebids collects the values of any entities specified and
saves them in the entities and zip_lists entries of the corresponding BidsComponent. In other words, these are
the entities to be preserved in output paths derived from the input being described. Placing an entity in wildcards
does not require the entity be present. If an entity is not found, it will be left out of entities. To require the presence
of an entity, place it under filters set to true.

In the following (YAML-formatted) example, the bold input type is specified. BIDS files with the datatype func, suffix
bold, and extension .nii.gz will be grabbed, and the subject, session, acquisition, task, and run entities of
those files will be left as wildcards. The task entity must be present, but there must not be any desc.

1 pybids_inputs:
2 bold:
3 filters:
4 suffix: 'bold'
5 extension: '.nii.gz'

(continues on next page)

34 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

6 datatype: 'func'
7 task: true
8 desc: false
9 wildcards:

10 - subject
11 - session
12 - acquisition
13 - task
14 - run

pybidsdb_dir

PyBIDS allows for the use of a cached layout to be used in order to reduce the time required to index a BIDS dataset.
A path (if provided) to save the pybids layout. If None or '' is provided, the layout is not saved or used. The path
provided must be absolute, otherwise the database will not be used.

pybidsdb_reset

A boolean determining whether the existing layout should be be updated. Default behaviour does not update the existing
database if one is used.

analysis_levels

A list of analysis levels in the BIDS app. Typically, this will include participant and/or group. Note that the default
(YAML) configuration file expects this mapping to be identified with the anchor analysis_levels to be aliased by
parse_args.

targets_by_analysis_level

A mapping from the name of each analysis_level to the list of rules or files to be run for that analysis level.

parse_args

A dictionary of command-line parameters to make available as part of the BIDS app. Each item of the mapping is
passed to argparse’s add_argument function. A number of default entries are present in a new snakebids project’s
config file that structure the BIDS app’s CLI, but additional command-line arguments can be added as necessary.

As in ArgumentParser.add_argument(), type may be used to convert the argument to the specified type. It may
be set to any type that can be serialized into yaml, for instance, str, int, float, and boolean.

1 parse_args:
2 --a-string:
3 help: args are string by default
4 --a-path:
5 help: |
6 A path pointing to data needed for the pipeline. These are still converted
7 into strings, but are first resolved into absolute paths (see below)

(continues on next page)

7.4. Bids Apps 35

https://bids-standard.github.io/pybids/generated/bids.layout.BIDSLayout.html#bids.layout.BIDSLayout
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

8 type: Path
9 --another-path:

10 help: This type annotation does the same thing as above
11 type: pathlib.Path
12 --a-number:
13 help: A number important for the analysis
14 type: float

When CLI parameters are used to collect paths, type should be set to Path (or pathlib.Path). These arguments will
still be serialized as strings (since yaml doesn’t have a path type), but snakebids will automatically resolve all arguments
into absolute paths. This is important to prevent issues with snakebids and relative paths.

debug

A boolean that determines whether debug statements are printed during parsing. Should be disabled (False) if you’re
generating DAG visualization with snakemake.

derivatives

A boolean (or path(s) to derivatives datasets) that determines whether snakebids will search in the derivatives subdi-
rectory of the input dataset.

7.4.2 Workflows

Snakebids workflows are constructed the same way as any other Snakemake workflows, but with a few additions that
make it easier to work with BIDS datasets.

To get access to these additions, the base Snakefile for a snakebids workflow should begin with the following boilerplate:

1 import snakebids
2 from snakebids import bids
3

4 configfile: 'config/snakebids.yml'
5

6 # Get input wildcards
7 inputs = snakebids.generate_inputs(
8 bids_dir=config["bids_dir"],
9 pybids_inputs=config["pybids_inputs"],

10 pybidsdb_dir=config.get("pybidsdb_dir"),
11 pybidsdb_reset=config.get("pybidsdb_reset"),
12 derivatives=config.get("derivatives"),
13 participant_label=config.get("participant_label"),
14 exclude_participant_label=config.get("exclude_participant_label"),
15)
16

36 Chapter 7. Relevant papers

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html

Snakebids, Release 0.13.2.dev2+816f114

Snakebids workflow features

The snakebids.bids function generates a properly-formatted BIDS filename with the specified entities, as docu-
mented in more detail elsewhere in this documentation.

snakebids.generate_inputs returns an instance of snakebids.BidsDataset, a special dictwith keys mapping
to the BidsComponents defined in the config file. Each BidsComponent contains a number of attributes to assist
processing a BIDS dataset with snakemake. generate_inputs() should be called at the beginning of the workflow
and assigned to a variable called inputs.

The path member of BidsComponent is generated by snakebids and contains a list of matched files for every input
type. Often, the first rule to be invoked will use one or more entries in inputs.path as the input file specification.

The expand() method of BidsComponent is used to expand over files using only the entity-values found in your
dataset. A usage pattern is as follows:

inputs["bold"].expand(
bids(

root="results",
datatype="func",
suffix="func.shape.gii",
hemi="{hemi}",
**inputs.wildcards["bold"]

),
hemi=config["hemi"],

)

Extra entities provided to BidsComponent.expand() will expand the path across every possible combination of val-
ues, just like in the snakemake expand().

By default, BidsComponent.expand() prevents partial expansion over paths, consistent with the default snakemake
behaviour. To allow the presence of extra wildcards in the path, set the allow_missing argument in BidsComponent.
expand() to True.

The wildcards member of BidsComponent is generated by snakebids and contains a dictionary mapping the wild-
cards for each input type to snakemake-formatted wildcards, for convenient use in the bids function.

Accessing the underlying pybids dataset

In addition to mapping all of the BidsComponents to their names, BidsDataset also has a layout member which
gives access to the underlying BIDSLayout. This can be used to access advanced pybids features not covered by
snakebids. Note that if custom_paths are specified for every BidsComponent, pybids indexing will be skipped
and layout will be set to None. If your workflow relies on accessing this layout, you must ensure your users do not
provide a custom_path for every single component, either in the config file or via the CLI (--path_{component}).

7.4.3 Plugins

Plugins allow you to extend the functionality of your BIDS app before and after parsing CLI arguments. For example,
you can use a plugin to perform BIDS validation of your Snakebids app’s input, which ensures your app is only executed
if the input dataset is valid. You can either use those that are distributed with Snakebids (see Using plugins) or create
your own plugins (see Creating plugins).

Note: For a full list of plugins distributed with Snakebids, see the Plugins reference page.

7.4. Bids Apps 37

https://docs.python.org/3/library/stdtypes.html#dict
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand
https://bids-standard.github.io/pybids/generated/bids.layout.BIDSLayout.html#bids.layout.BIDSLayout

Snakebids, Release 0.13.2.dev2+816f114

Nearly all of the functionality provided by snakebids.bidsapp is provided by plugins, including
SnakemakeBidsApp.

Unlike in libraries such as pytest, plugins must be explicitly enabled to be included in the app. Installing them with pip
is not enough! This affords a great deal of control over how the BIDS app is executed.

Using plugins

To add plugins to your bidsapp, pass them to the SnakeBidsApp constructor via the plugins parameter. Plugins are
executed in LIFO order (last in, first out).

As an example, the BidsValidator plugin can be used to run the BIDS Validator on the input directory like so:

1 from snakebids import bidsapp, plugins
2

3 bidsapp.app([
4 plugins.SnakemakeBidsApp("path/to/snakebids/app"),
5 plugins.BidsValidator,
6]).run()

Dependencies

Some plugins depend on other plugins. These dependencies will be loaded even if not specified in bidsapp.app. If a
dependency needs explicit configuration, however, they may still be safely provided in app initialization, as snakebids
will prevent duplicate registration.

For example, SnakemakeBidsApp depends on BidsArgs, CliConfig, ComponentEdit, etc, but these plugins may
still be specified to change their configuration. The order of specification will be respected (e.g. LIFO).

1 from snakebids import bidsapp, plugins
2

3 bidsapp.app([
4 plugins.SnakemakeBidsApp("path/to/snakebids/app"),
5 # specify the BidsArgs plugin to override the argument group
6 plugins.BidsArgs(argument_group="MAIN"),
7]).run()

Creating plugins

Plugins are implemented using pluggy, the plugin system used and maintained by pytest. Actions are executed in one
of several hooks. These are called at specified times as the argument parser is built, arguments are parsed, and the
config is formatted.

A plugin is a class or module with methods or functions wrapped with the snakebids plugin hook decorator:
snakebids.bidsapp.hookimpl. The name of the function determines the stage of app initialization at which it
will be called. Each recognized function name (known as specs) comes with a specified set of available arguments.
Not all the available arguments need to be used, however, they must be given the correct name. The API documenta-
tion contains the complete list of available specs, their corresponding initialization stages, and the arguments they can
access.

As an example, a simplified version of the bids-validator plugin that runs the BIDS Validator could be defined as
follows:

38 Chapter 7. Relevant papers

https://github.com/bids-standard/bids-validator
https://pluggy.readthedocs.io/en/stable/index.html#callorder
https://pluggy.readthedocs.io/en/stable/index.html
https://github.com/bids-standard/bids-validator

Snakebids, Release 0.13.2.dev2+816f114

1 import argparse
2 import subprocess
3 from typing import Any
4

5 from snakebids import bidsapp
6

7 class BidsValidator:
8 """Perform BIDS validation of dataset
9

10 Parameters
11 -----------
12 app
13 Snakebids application to be run
14 """
15

16 @bidsapp.hookimpl
17 def add_cli_arguments(self, parser: argparse.ArgumentParser):
18 parser.add_argument("--skip-validation", dest="plugins.validator.skip")
19

20 @bidsapp.hookimpl
21 def finalize_config(self, config: dict[str, Any]) -> None:
22 # Skip bids validation
23 if config["plugins.validator.skip"]:
24 return
25

26 try:
27 subprocess.run(
28 ["bids-validator", config["bids_dir"]], check=True
29)
30 except subprocess.CalledProcessError as err:
31 raise InvalidBidsError from err
32

33

34 class InvalidBidsError(SnakebidsPluginError):
35 """Error raised if input BIDS dataset is invalid,
36 inheriting from SnakebidsPluginError.
37 """

In this example, two hooks were used. The add_cli_arguments() hook is called before CLI arguments are parsed.
Here, it adds an argument allowing end users of our app to skip bids validation. Note that the spec specifies three
arguments available to this hook (parser, config, and argument_groups), however, we only used parser here.

Note: When adding plugin-specific parameters to the config dictionary, it is recommended to use namespaced keys
(e.g. plugins.validator.skip). This will help ensure plugin-specific parameters do not conflict with other param-
eters already defined in the dictionary or by other plugins.

The finalize_config() hook is called after config is updated with the results of argument parsing. In our plugin,
this is where validation is actually performed. Note how the argument added in the previous hook is now read from
config. Any modifications made to config will be carried forward into the app’s remaining lifetime.

A plugin can be used to implement any logic that can be handled by a Python function. In the above example, you may
also want to add some logic to check if the BIDS Validator is installed and pass along a custom error message if it is
not. Created plugins can then be used within a Snakebids workflow, similar to the example provided in Using plugins

7.4. Bids Apps 39

Snakebids, Release 0.13.2.dev2+816f114

section. Prospective plugin developers can take a look at the source of the snakebids.pluginsmodule for examples.

Note: When creating a custom error for your Snakebids plugin, it is recommended to inherit from
SnakebidsPluginError such that errors will be recognized as a plugin error.

Specifying dependencies

Dependencies may be specified using a DEPENDENCIES attribute in your plugin class or module. It should be set to a
tuple containing fully initialized plugin references. These dependencies will be registered after the depending plugin
and therefore run first (due to pluggy’s LIFO order).

1 from snakebids import bidsapp, plugins
2

3 class MyPlugin:
4 DEPENDENCIES = (
5 plugins.CliConfig(),
6 plugins.BidsArgs(),
7)
8

9 @bidsapp.hookimpl
10 def finalize_config(self, config):
11 ...

Snakebids apps rely on a configuration file (snakebids.yml). This file specifies which files from a BIDS dataset
should be used as input. The apps also utilize workflow definitions, which are written in one or more Snakefile(s) and
determine how the input files are processed.

Note: For an easy setup of new Snakebids apps with convenient command-line functions, we recommend installing
Snakebids using pipx. Visit the following page for instructions on how to install pipx.

Once Snakebids is installed, you can generate a customized Snakebids project by running the command snakebids
create and providing the necessary information when prompted.

7.5 Running Snakebids

Once you’ve specified a snakebids app with a config file and one or more workflow files, you’re ready to invoke your
snakebids app with the standard BIDS app CLI.

Snakebids apps generated with the cookiecutter template will have a simple executable called run.py, which exposes
the BIDS app CLI, with any additional options configured in the snakebids.yml config file. Installing the project
with pip will also add an executable with the project’s name to the path. Any Snakemake arguments should be added
to the end of the invocation.

While Snakebids apps use the standard BIDS app CLI (i.e. {app_name} {input} {output} {analysis_level}),
it is possible to override the input location for each input type defined in the configuration file. By passing the path
override argument --path_{input_type} {path}, where {input_type} is the name of an input type defined in
the configuration file, and {path} is the path to a directly containing files appropriate for that input type. If a path
override argument is provided for every input type, an {input} argument must still be provided to the BIDS app CLI,
but it does not need to be an existing directory; a string like - will work.

40 Chapter 7. Relevant papers

https://pluggy.readthedocs.io/en/stable/index.html#callorder
https://pypa.github.io/pipx/

Snakebids, Release 0.13.2.dev2+816f114

Note that if any rules in the Snakebids workflow use Singularity containers, special precautions must be taken to ensure
the input dataset is bound to the Singularity environment. Either:

1. Inputs are copied into a working subdirectory of the output directory before any processing that requires a Sin-
gularity container is performed, or:

2. The SINGULARITY_BINDPATH environment variable binds the location of the input dataset.

Indexing of large datasets can be a time-consuming process. Leveraging the functionality of PyBIDS, Snakebids offers
a convenient solution by allowing you to create or utilize an existing database. With this approach, the indexing of
datasets is only performed when explicitly requested, typically following changes to the dataset. To create or use an
existing database, you can invoke the following CLI arguments:

1. --pybidsdb-dir {dir}: specify the path to the database directory

2. --pybidsdb-reset: indicate that an existing database should be updated

The boilerplate app starts with the validator plugin enabled - without it, validation is not performed. By de-
fault, this feature uses the command-line (node.js) version of the validator. If this is not found to be installed
on the system, the pybids version of validation will be performed instead. To opt-out of validation, invoke the
--skip-bids-validation flag. Details related to using and creating plugins can be found on the plugins page.

7.5.1 Workflow mode

Snakebids apps use a BIDS app CLI, giving great flexibility when switching datasets. However, when developing a
Snakebids app or when running the app repeatedly on the same dataset, it can be more convenient to directly call the
Snakemake CLI. Snakebids facilitates this using workflow mode.

Workflow mode activates when the Snakebids app itself is used as the output folder. Snakebids will save your config
file in the config folder and put any outputs in the results folder. After the first Snakebids call, the Snakemake CLI can
be called directly using the generated config file.

As an example, suppose we have a BIDS formatted dataset:

dataset
code
dataset_description.json
derivatives
sub-001
sub-002
sub-003
sub-004
sub-005
sub-006
sub-007
sub-008
sub-009

We’d like to develop a new processing pipeline called SuperCorrect. We’ll start by making a new directory in
derivatives using the Snakemake CookieCutter template:

dataset
code
dataset_description.json
derivatives

super_correct
config

(continues on next page)

7.5. Running Snakebids 41

https://www.npmjs.com/package/bids-validator

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

snakebids.yml
pipeline_description.json
run.py
workflow

Snakefile
sub-001
sub-002
sub-003
sub-004
sub-005
sub-006
sub-007
sub-008
sub-009

cd to super_correct:

super_correct
config

snakebids.yml
pipeline_description.json
run.py
workflow

Snakefile

We then develop our pipeline, writing our Snakefile, rules, etc. When we’re ready to start testing, we start by calling
our run.py function:

run.py ../../ . participant [snakemake args]

We’ll see a message telling us the app is running in snakemake mode and, if our workflow doesn’t have any bugs, the
app will run! config/snakebids.yml will be updated to include all the information we passed into the CLI. Output
files will be in the results folder:

super_correct
config

snakebids.yml
pipeline_description.json
results

super_correct
dataset_description.json
sub-001
sub-002
sub-003
sub-004
sub-005
sub-006
sub-007
sub-008
sub-009

run.py
workflow

Snakefile

42 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

From now on, instead of calling run.py, we can just the Snakemake CLI directly. It will use the same inputs and
outputs saved into our config by Snakebids:

snakemake [args]

You can still use the Snakebids CLI on other datasets. However, if you plan on modifying any files, including config, to
make the Snakebids app suitable for the new dataset, it’s recommended to use git to clone the app into the derivatives
folder of the new dataset. Alternatively, you can call run.py with the --workflow-mode flag:

run.py /path/to/newdata /path/to/newdata/derivatives/super_correct participant --
→˓workflow-mode [snakemake args]

This will make a copy of the Snakebids app at the new output directory, excluding the results folder and some
configuration folders/files (.snakemake/, .snakebids). It will, again, make a new config file, and put new results in
the output/results folder.

7.6 Migrations

Snakebids has rapidly evolved over the last few versions, resulting in a number of breaking changes. Use the following
guides if you’re migrating codes from old snakemake versions.

7.6.1 0.5 to 0.8+

Note: Be sure to also migrate your run.py file to the new snakebids 0.12 syntax!

Starting in version 0.8, snakebids.generate_inputs() returns a BidsInputs object instead of a dict. This
requires a change in the way info is accessed. The previous dict had top-level keys such as "input_lists". After
selecting such a key, you would pass the name of a component to get the information sought:

1 config.update(snakebids.generate_inputs(
2 bids_dir=config['bids_dir'],
3 pybids_inputs=config['pybids_inputs'],
4 use_bids_inputs=False,
5))
6

7 config["input_lists"]["t1w"]

Now, the components are top level keys, and the type of property being requested is accessed using an attribute:

1 inputs = snakebids.generate_inputs(
2 bids_dir=config['bids_dir'],
3 pybids_inputs=config['pybids_inputs'],
4)
5

6 inputs["t1w"].entities

Note that the old behaviour can still be achieved by setting use_bids_inputs=False, as shown in the above example.
However, we encourage all users to upgrade to take advantage of all the new features Snakebids has to offer.

7.6. Migrations 43

Snakebids, Release 0.13.2.dev2+816f114

1. Assign generate_inputs() to a variable called inputs

Because generate_inputs() no longer returns a dict, you cannot use it to update config, as was previously recom-
mended. The new best practice is to assign its return to a variable called inputs:

1 inputs = snakebids.generate_inputs(
2 bids_dir=config['bids_dir'],
3 pybids_inputs=config['pybids_inputs'],
4)

2. Change references to config

All references to config['<attr>']['<comp>'], where <attr> is one of 'input_path', 'input_zip_lists',
'input_lists', or 'input_wildcards', must be updated to input['<comp>'].<attr>. The following regexes
may be helpful for search and replace:

match
config\[([\x22\x27])(input_path|input_zip_lists|input_lists|input_wildcards)\1\]\[([\x22\
→˓x27])(\w+)\3\]

replace
inputs["\4"].\2

In addition, all references to config['<attr>'] where <attr> is one of 'sessions', 'subjects', or
'subj_wildcards' must be updated to input.<attr>. The following regexes may be helpful:

match
config\[([\x22\x27])(sessions|subjects|subj_wildcards)\1\]

replace
inputs.\2

3. Update attribute names into modern forms

Although the previous attribute names are being kept around as aliases, we recommend you update to the more modern,
sleeker equivalents. Replacements should be made according to the following table:

• input_path -> path

• input_lists -> entities

• input_zip_lists -> zip_lists

• input_wildcards -> wildcards

44 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

4. Switch to expand() method

Calls to snakemake’s expand() should be replaced with the new expand() method available on BidsComponent.
See the section in 0.7-0.8 migration guide for more details.

7.6.2 0.7 to 0.8+

Warning: If your code still has bits like this:

1 config.update(generate_inputs(
2 bids_dir=config['bids_dir'],
3 pybids_inputs=config['pybids_inputs'],
4))

Check out the pre-0.6 migration guide to a guide on how to upgrade!

Note: Be sure to also migrate your run.py file to the new snakebids 0.12 syntax!

Default return of generate_inputs()

V0.8 switches the default return value of generate_inputs() from BidsDatasetDict to BidsDataset. Legacy
code still relying on the old dictionary can avoid the update by setting the use_bids_inputs pararmeter in
generate_inputs() to False:

1 config.update(generate_inputs(
2 bids_dir=config['bids_dir'],
3 pybids_inputs=config['pybids_inputs'],
4 use_bids_inputs=False,
5))

Code that previously set use_bids_inputs=True should remove that line from generate_inputs(). Such manual
assignment is deprecated.

Properties of BidsDataset

The behaviour of the properties of BidsDataset, including path , zip_lists, entities, and wildcards is set to
change in an upcoming release, thus, their current use is deprecated. Code should now access these properties via the
BidsComponent. For instance:

deprecated in v0.8
inputs.wildcards["t1w"]
inputs.entities["t1w"]

should now use
inputs["t1w"].wildcards
inputs["t1w"].entities

7.6. Migrations 45

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand

Snakebids, Release 0.13.2.dev2+816f114

New expand() method

V0.8 features a new expand() method on BidsComponent. This method automatically ensures only entity-values
actually contained in your dataset are used when expanding over a path. It supports the addition of extra wildcards,
and can expand over the component path or any number of provided paths. It should generally be preferred over
snakemake’s expand() when BidsComponents are involved, due to the increased safety and ease of use.

An expand call that used to look like this:

rule all:
input:

expand(
expand(

bids(
root=root,
desc="{smooth}",
**inputs["bold"].wildcards,

),
allow_missing=True,
smooth=[1, 2, 3, 4],

),
zip,
**inputs["bold"].zip_lists,

)

can now be written like this:

rule all:
input:

inputs['bold'].expand(
bids(

root=root,
desc="{smooth}",
**inputs["bold"].wildcards,

),
smooth=[1, 2, 3, 4],

)

7.6.3 0.11 to 0.12+

Snakebids 0.12 introduces a new, more flexible module for creating bidsapps. This affects the syntax of the run.py
file. Older versions used the snakebids.app.SnakeBidsApp class to initialize the bidsapp, and this method will still
work for the forseeable future. Switching to the new syntax will give access to new plugins and integrations and ensure
long term support.

If you haven’t heavily modified your run.py file, you can transition simply by replacing it with the following:

1 #!/usr/bin/env python3
2 from pathlib import Path
3

4 from snakebids import bidsapp, plugins
5

6 app = bidsapp.app(
(continues on next page)

46 Chapter 7. Relevant papers

https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

7 [
8 plugins.SnakemakeBidsApp(Path(__file__).resolve().parent),
9 plugins.BidsValidator(),

10 plugins.Version(distribution="<app_name_here>"),
11]
12)
13

14

15 def get_parser():
16 """Exposes parser for sphinx doc generation, cwd is the docs dir."""
17 return app.build_parser().parser
18

19

20 if __name__ == "__main__":
21 app.run()

The snakemake workflow will work in exactly the same way.

7.7 API

7.7.1 Path Building

snakebids.bids(root=None, *, datatype=None, prefix=None, suffix=None, extension=None, **entities)
Generate bids or bids-like paths.

File path is of the form:

[root]/[sub-{subject}]/[ses-{session]/
[prefix]_[sub-{subject}]_[ses-{session}]_[{key}-{val}_ ...]_[suffix]

If no arguments are specified, an empty string will be returned.

Datatype and prefix may not be used in isolation, but must be given with another entity.

BIDS paths are built based on specs, which are versioned for long-term stability. The latest version is v0_0_0.
Information on its spec can be found at v0_0_0().

Warning: By default, bids() will always use the latest BIDS spec. This is unsafe for production environ-
ments, as the spec may be updated without warning, even on patch releases. These updates may change the
path output by bids(), resulting in breaking changes in downstream apps

Production code should always explicitly set the spec version using set_bids_spec():

from snakebids import set_bids_spec
set_bids_spec("v0_0_0")

Parameters

• root (str | Path | None) – Root folder to include in the path (e.g. results)

• datatype (str | None) – Folder to include after sub-/ses- (e.g. anat, dwi)

7.7. API 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

• prefix (str | None) – String to prepend to the file name. Useful for injecting custom
entities at the front of the filename, e.g. tpl-{tpl}

• suffix (str | None) – Suffix plus, optionally, the extension (e.g. T1w.nii.gz)

• extension (str | None) – bids extension, beginning with . (e.g. .nii.gz). Typically
shouldn’t be specified manually: extensions should be listed along with the suffix.

• entities (str | bool) – bids entities as keyword arguments paired with values (e.g.
space="T1w" for space-T1w)

Return type
str

Examples

Below is a rule using bids naming for input and output:

rule proc_img:
input: 'sub-{subject}_T1w.nii.gz' output:
'sub-{subject}_space-snsx32_desc-preproc_T1w.nii.gz'

With bids() you can instead use:

rule proc_img: input: bids(subject='{subject}',suffix='T1w.nii.gz')
output: bids(

subject='{subject}', space='snsx32', desc='preproc',
suffix='T1w.nii.gz'

)

Note that here we are not actually using “functions as inputs” in snakemake, which would require a function
definition with wildcards as the argument, and restrict to input/params, but bids() is being used simply to return
a string.

Also note that space, desc and suffix are NOT wildcards here, only {subject} is. This makes it easy to combine
wildcards and non-wildcards with bids-like naming.

However, you can still use bids() in a lambda function. This is especially useful if your wildcards are named the
same as bids entities (e.g. {subject}, {session}, {task} etc..):

rule proc_img:
input: lambda wildcards: bids(**wildcards,suffix='T1w.nii.gz') output:
bids(

subject='{subject}', space='snsx32', desc='preproc',
suffix='T1w.nii.gz'

)

Or another example where you may have many bids-like wildcards used in your workflow:

rule denoise_func:
input: lambda wildcards: bids(**wildcards, suffix='bold.nii.gz') output:
bids(

subject='{subject}', session='{session}', task='{task}',
acq='{acq}', desc='denoise', suffix='bold.nii.gz'

)

48 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

In this example, all the wildcards will be determined from the output and passed on to bids() for inputs. The
output filename will have a ‘desc-denoise’ flag added to it.

Also note that even if you supply entities in a different order, the entities will be ordered based on the OrderedDict
defined here. If entities not known are provided, they will be just be placed at the end (before the suffix), in the
order you provide them in.

snakebids.bids_factory(spec)
Generate bids functions according to the supplied spec.

Parameters

• spec (List[BidsPathEntitySpec]) – Valid Bids Spec object

• _implicit (bool) – Flag used internally to mark the default generated bids function. The
resulting builder will warn when custom entities are used

Return type
BidsFunction

snakebids.set_bids_spec(spec)
Set the spec to be used by path generation functions (such as bids()).

Parameters
spec (BidsPathSpec | VALID_SPECS) – Either a spec object, or the name of a builtin spec

Specs

BIDS specs control the formatting of paths produced by the bids() function. They specify the order of recognized
entities, placing ses-X after sub-Y, for instance, no matter what order they are specified in the function. Unrecognized
entitites are placed in the order specified in the function call.

Because of this, each addition of entities to the spec presents a potentially breaking change. Suppose an entity called
foo were added to the spec. Calls to bids() with foo as an argument would place the entity at the end of the path:

from snakebids import bids

Before foo is in the spec
bids(

subject="001",
session="1",
label="WM",
foo="bar",
suffix="data.nii.gz",

) == "sub-001_ses-1_label-WM_foo-bar_data.nii.gz"

The addition of foo to the spec might move the position of the entity forward in the output:

After foo is in the spec
bids(

subject="001",
session="1",
label="WM",
foo="bar",
suffix="data.nii.gz",

) == "sub-001_ses-1_foo-bar_label-WM_data.nii.gz"

7.7. API 49

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#bool

Snakebids, Release 0.13.2.dev2+816f114

This would change the output paths of workflow using this function call, causing a breaking change in workflow be-
haviour.

To ensure stable path generation across releases, Snakebids ships with versioned specs that can be explicitly set using
snakebids.set_bids_specs(). These specs are named after the snakebids version they release with. By default,
bids()will always use the latest spec, but production code should generally declare the spec to be used by the workflow:

from snakebids import set_bids_spec
set_bids_spec("v0_0_0")

This is especially true of workflows using custom entities. To emphasize this, a warning is issued in python scripts and
apps using such entities without declaring a spec version.

snakebids.paths.specs.v0_0_0(subject_dir=True, session_dir=True)
Get the v0.0.0 BidsPathSpec.

This spec alone equips bids() with 2 extra arguments: include_subject_dir and include_session_dir.
These default to True, but if set False, remove the subject and session dirs respectively from the output path.
For future specs, this behaviour should be achieved by modifying the spec and generating a new bids() function

Formatted as:

sub-{subject}/ses-{session}/{datatype}/{prefix}_sub-{subject}_ses-{session}_
task-{task}_acq-{acq}_ce-{ce}_rec-{rec}_dir-{dir}_run-{run}_mod-{mod}_
echo-{echo}_hemi-{hemi}_space-{space}_res-{res}_den-{den}_label-{label}_
desc-{desc}_..._{suffix}{extension}

Parameters

• subject_dir (bool) – If False, downstream path generator will not include the subject dir
sub-{subject}/*

• session_dir (bool, optional) – If False, downstream path generator will not include
the session dir */ses-{session}/*

Return type
List[BidsPathEntitySpec]

snakebids.paths.specs.v0_11_0(subject_dir=True, session_dir=True)
Spec corresponding to BIDS v1.9.0.

Significantly expanded from the v0.0.0 spec, now including long names for every relevant entity. In addition to
the official spec, it includes from and to entities intended for transformations. Unknown entities are placed just
before desc, so that the description entity is always last.

Formatted as:

sub-{subject}/ses-{session}/{datatype}/{prefix}_sub-{subject}_ses-{session}_
sample-{sample}_task-{task}_tracksys-{tracksys}_acq-{acquisition}_
ce-{ceagent}_stain-{staining}_trc-{tracer}_rec-{reconstruction}_
dir-{direction}_run-{run}_mod-{modality}_echo-{echo}_flip-{flip}_
inv-{inversion}_mt-{mt}_proc-{processed}_part-{part}_space-{space}_
atlas-{atlas}_seg-{segmentation}_hemi-{hemisphere}_res-{resolution}_
den-{density}_roi-{roi}_from-{from}_to-{to}_split-{split}_
recording-{recording}_chunk-{chunk}_model-{model}_subset-{subset}_
label-{label}_..._desc-{description}_{suffix}{extension}

Parameters

50 Chapter 7. Relevant papers

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://bids-specification.readthedocs.io/en/v1.9.0/

Snakebids, Release 0.13.2.dev2+816f114

• subject_dir (bool) – If False, downstream path generator will not include the subject dir
sub-{subject}/*

• session_dir (bool, optional) – If False, downstream path generator will not include
the session dir */ses-{session}/*

Return type
List[BidsPathEntitySpec]

snakebids.paths.specs.latest()

Points to the most recent spec

Types

class snakebids.BidsFunction(*args, **kwargs)
Signature for functions returned by bids_factory.

See bids() for more details

class snakebids.paths.BidsPathEntitySpec

Defines an entity in a bids path.

entity: str

Entity full name

tag: str

Short entity name, as appears in the path

dir: bool

If true, a directory with the entity-value pair is created

class snakebids.paths.BidsPathSpec

7.7.2 Dataset Creation

snakebids.generate_inputs(bids_dir: Path | str, pybids_inputs: InputsConfig, pybidsdb_dir: Path | str | None =
None, pybidsdb_reset: bool = None, derivatives: bool | Path | str = False,
pybids_config: str | None = None, limit_to: Iterable[str] | None = None,
participant_label: Iterable[str] | str | None = None, exclude_participant_label:
Iterable[str] | str | None = None, use_bids_inputs: Literal[True] | None = None,
index_metadata: bool = False, validate: bool = False, pybids_database_dir: Path
| str | None = None, pybids_reset_database: bool = None)→ BidsDataset

snakebids.generate_inputs(bids_dir: Path | str, pybids_inputs: InputsConfig, pybidsdb_dir: Path | str | None =
None, pybidsdb_reset: bool = None, derivatives: bool | Path | str = False,
pybids_config: str | None = None, limit_to: Iterable[str] | None = None,
participant_label: Iterable[str] | str | None = None, exclude_participant_label:
Iterable[str] | str | None = None, use_bids_inputs: Literal[False] = None,
index_metadata: bool = False, validate: bool = False, pybids_database_dir: Path
| str | None = None, pybids_reset_database: bool = None)→ BidsDatasetDict

Dynamically generate snakemake inputs using pybids_inputs.

Pybids is used to parse the bids_dir. Custom paths can also be parsed by including the custom_paths entry under
the pybids_inputs descriptor.

Parameters

7.7. API 51

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Literal
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool

Snakebids, Release 0.13.2.dev2+816f114

• bids_dir – Path to bids directory

• pybids_inputs – Configuration for bids inputs, with keys as the names (str)

Nested dicts with the following required keys (for complete info, see InputConfig):

– "filters": Dictionary of entity: “values” (dict of str -> str or list of str). The entity
keywords should the bids tags on which to filter. The values should be an acceptable str
value for that entity, or a list of acceptable str values.

– "wildcards": List of (str) bids tags to include as wildcards in snakemake. At minimum
this should usually include ['subject','session'], plus any other wildcards that you
may want to make use of in your snakemake workflow, or want to retain in the output
paths. Any wildcards in this list that are not in the filename will just be ignored.

– "custom_path": Custom path to be parsed with wildcards wrapped in braces, as in /
path/to/sub-{subject}/{wildcard_1}-{wildcard_2}. This path will be parsed
without pybids, allowing the use of non-bids-compliant paths.

• pybidsdb_dir – Path to database directory. If None is provided, database is not used

• pybidsdb_reset – A boolean that determines whether to reset / overwrite existing database.

• derivatives – Indicates whether pybids should look for derivative datasets under bids_dir.
These datasets must be properly formatted according to bids specs to be recognized. Defaults
to False.

• limit_to – If provided, indicates which input descriptors from pybids_inputs should be
parsed. For example, if pybids_inputs describes "bold" and "dwi" inputs, and limit_to
= ["bold"], only the “bold” inputs will be parsed. “dwi” will be ignored

• participant_label – Indicate one or more participants to be included from input parsing.
This may cause errors if subject filters are also specified in pybids_inputs. It may not be
specified if exclude_participant_label is specified

• exclude_participant_label – Indicate one or more participants to be excluded from
input parsing. This may cause errors if subject filters are also specified in pybids_inputs. It
may not be specified if participant_label is specified

• use_bids_inputs – If False, returns the classic BidsDatasetDict instead of
:class`BidsDataset`. Setting to True is deprecated as of v0.8, as this is now the default be-
haviour

• index_metadata – If True indexes metadata of BIDS directory using pybids, otherwise
skips indexing.

• validate – If True performs validation of BIDS directory using pybids, otherwise skips
validation.

Returns
Object containing organized information about the bids inputs for consumption in snakemake.
See the documentation of BidsDataset for details and examples.

Return type
BidsDataset | BidsDatasetDict

52 Chapter 7. Relevant papers

Snakebids, Release 0.13.2.dev2+816f114

Example

As an example, consider the following BIDS dataset:

example
README.md
dataset_description.json
participant.tsv
sub-001

ses-01
anat

sub-001_ses-01_run-01_T1w.json
sub-001_ses-01_run-01_T1w.nii.gz
sub-001_ses-01_run-02_T1w.json
sub-001_ses-01_run-02_T1w.nii.gz

func
sub-001_ses-01_task-nback_bold.json
sub-001_ses-01_task-nback_bold.nii.gz
sub-001_ses-01_task-rest_bold.json
sub-001_ses-01_task-rest_bold.nii.gz

ses-02
anat

sub-001_ses-02_run-01_T1w.json
sub-001_ses-02_run-01_T1w.nii.gz

func
sub-001_ses-02_task-nback_bold.json
sub-001_ses-02_task-nback_bold.nii.gz
sub-001_ses-02_task-rest_bold.json
sub-001_ses-02_task-rest_bold.nii.gz

sub-002
ses-01

anat
sub-002_ses-01_run-01_T1w.json
sub-002_ses-01_run-01_T1w.nii.gz
sub-002_ses-01_run-02_T1w.json
sub-002_ses-01_run-02_T1w.nii.gz

func
sub-002_ses-01_task-nback_bold.json
sub-002_ses-01_task-nback_bold.nii.gz
sub-002_ses-01_task-rest_bold.json
sub-002_ses-01_task-rest_bold.nii.gz

ses-02
anat

sub-002_ses-02_run-01_T1w.json
sub-002_ses-02_run-01_T1w.nii.gz
sub-002_ses-02_run-02_T1w.json
sub-002_ses-02_run-02_T1w.nii.gz

With the following pybids_inputs defined in the config file:

pybids_inputs:
bold:
filters:
suffix: 'bold'

(continues on next page)

7.7. API 53

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

extension: '.nii.gz'
datatype: 'func'

wildcards:
- subject
- session
- acquisition
- task
- run

Then generate_inputs(bids_dir, pybids_input) would return the following values:

BidsDataset({
"bold": BidsComponent(

name="bold",
path="bids/sub-{subject}/ses-{session}/func/sub-{subject}_ses-{session}_

→˓task-{task}_bold.nii.gz",
zip_lists={

"subject": ["001", "001", "001", "001", "002", "002"],
"session": ["01", "01", "02", "02", "01", "01"],
"task": ["nback", "rest", "nback", "rest", "nback", "rest"],

},
),
"t1w": BidsComponent(

name="t1w",
path="example/sub-{subject}/ses-{session}/anat/sub-{subject}_ses-{session}_

→˓run-{run}_T1w.nii.gz",
zip_lists={

"subject": ["001", "001", "001", "002", "002", "002", "002"],
"session": ["01", "01", "02", "01", "01", "02", "02"],
"run": ["01", "02", "01", "01", "02", "01", "02"],

},
),

})

7.7.3 Dataset Manipulation

snakebids.filter_list(zip_list, filters, return_indices_only=False, regex_search=False)
Filter zip_list, including only entries with provided entity values.

Parameters

• zip_list (ZipListLike) – generated zip lists dict from config file to filter

• filters (Mapping[str, Iterable[str] | str]) – wildcard values to filter the zip
lists

• return_indices_only (bool) – return the indices of the matching wildcards

• regex_search (bool) – Use regex matching to filter instead of the default equality check.

Return type
ZipList | list[int]

54 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Snakebids, Release 0.13.2.dev2+816f114

Examples

>>> import snakebids

Filtering to get all subject='01' scans:

>>> snakebids.filter_list(
... {
... 'dir': ['AP','PA','AP','PA', 'AP','PA','AP','PA'],
... 'acq': ['98','98','98','98','99','99','99','99'],
... 'subject': ['01','01','02','02','01','01','02','02']
... },
... {'subject': '01'}
...) == {
... 'dir': ['AP', 'PA', 'AP', 'PA'],
... 'acq': ['98', '98', '99', '99'],
... 'subject': ['01', '01', '01', '01']
... }
True

Filtering to get all acq='98' scans:

>>> snakebids.filter_list(
... {
... 'dir': ['AP','PA','AP','PA', 'AP','PA','AP','PA'],
... 'acq': ['98','98','98','98','99','99','99','99'],
... 'subject': ['01','01','02','02','01','01','02','02']
... },
... {'acq': '98'}
...) == {
... 'dir': ['AP', 'PA', 'AP', 'PA'],
... 'acq': ['98', '98', '98', '98'],
... 'subject': ['01', '01', '02', '02']
... }
True

Filtering to get all dir=='AP' scans:

>>> snakebids.filter_list(
... {
... 'dir': ['AP','PA','AP','PA', 'AP','PA','AP','PA'],
... 'acq': ['98','98','98','98','99','99','99','99'],
... 'subject': ['01','01','02','02','01','01','02','02']
... },
... {'dir': 'AP'}
...) == {
... 'dir': ['AP', 'AP', 'AP', 'AP'],
... 'acq': ['98', '98', '99', '99'],
... 'subject': ['01', '02', '01', '02']
... }
True

Filtering to get all subject='03' scans (i.e. no matches):

7.7. API 55

Snakebids, Release 0.13.2.dev2+816f114

>>> snakebids.filter_list(
... {
... 'dir': ['AP','PA','AP','PA', 'AP','PA','AP','PA'],
... 'acq': ['98','98','98','98','99','99','99','99'],
... 'subject': ['01','01','02','02','01','01','02','02']
... },
... {'subject': '03'}
...) == {
... 'dir': [],
... 'acq': [],
... 'subject': []
... }
True

snakebids.get_filtered_ziplist_index(zip_list, wildcards, subj_wildcards)
Return the indices of all entries matching the filter query.

Parameters

• zip_list (dict) – lists for scans in a dataset, zipped to get each instance

• wildcards (dict) – wildcards for the single instance for querying it’s index

• subj_wildcards (dict) – keys of this dictionary are used to pick out the subject/(session)
from the wildcards

Return type
int | list[int]

Examples

>>> import snakebids

In this example, we have a dataset where with scans from two subjects, where each subject has dir-AP and
dir-PA scans, along with acq-98 and acq-99:

• sub-01_acq-98_dir-AP_dwi.nii.gz

• sub-01_acq-98_dir-PA_dwi.nii.gz

• sub-01_acq-99_dir-AP_dwi.nii.gz

• sub-01_acq-99_dir-PA_dwi.nii.gz

• sub-02_acq-98_dir-AP_dwi.nii.gz

• sub-02_acq-98_dir-PA_dwi.nii.gz

• sub-02_acq-99_dir-AP_dwi.nii.gz

• sub-02_acq-99_dir-PA_dwi.nii.gz

The zip_list produced by generate_inputs() is the set of entities that when zipped together, e.g. with
expand(path, zip, **zip_list), produces the entity combinations that refer to each scan:

{
'dir': ['AP','PA','AP','PA', 'AP','PA','AP','PA'],
'acq': ['98','98','98','98','99','99','99','99'],

(continues on next page)

56 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int

Snakebids, Release 0.13.2.dev2+816f114

(continued from previous page)

'subject': ['01','01','02','02','01','01','02','02']
}

The filter_list() function produces a subset of the entity combinations as a filtered zip list. This is used e.g.
to get all the scans for a single subject.

This get_filtered_ziplist_index() function performs filter_list() twice:

1. Using the subj_wildcards (e.g.: 'subject': '{subject}') to get a subject/session-specific
zip_list.

2. To return the indices from that list of the matching wildcards.

In this example, if the wildcards parameter was:

{'dir': 'PA', 'acq': '99', 'subject': '01'}

Then the first (subject/session-specific) filtered list provides this zip list:

{
'dir': ['AP','PA','AP','PA'],
'acq': ['98','98','99','99'],
'subject': ['01','01','01','01']

}

which has 4 combinations, and thus are indexed from 0 to 3.

The returned value would then be the index (or indices) that matches the wildcards. In this case, since the
wildcards were {'dir': 'PA', 'acq': '99', 'subject':'01'}, the return index is 3.

>>> snakebids.get_filtered_ziplist_index(
... {
... 'dir': ['AP','PA','AP','PA', 'AP','PA','AP','PA'],
... 'acq': ['98','98','98','98','99','99','99','99'],
... 'subject': ['01','01','02','02','01','01','02','02']
... },
... {'dir': 'PA', 'acq': '99', 'subject': '01'},
... {'subject': '{subject}' }
...)
3

7.7.4 Data Structures

class snakebids.BidsComponent(*, name, path, zip_lists)
Representation of a bids data component.

A component is a set of data entries all corresponding to the same type of object. Entries vary over a set of
entities. For example, a component may represent all the unprocessed, T1-weighted anatomical images aqcuired
from a group of 100 subjects, across 2 sessions, with three runs per session. Here, the subject, session, and run
are the entities over which the component varies. Each entry in the component has a single value assigned for
each of the three entities (e.g subject 002, session 01, run 1).

Each entry can be defined solely by its wildcard values. The complete collection of entries can thus be stored as
a table, where each row represents an entity and each column represents an entry.

7.7. API 57

Snakebids, Release 0.13.2.dev2+816f114

BidsComponent stores and indexes this table. It uses ‘row-first’ indexing, meaning first an entity is selected, then
an entry. It also has a number of properties and methods making it easier to incorporate the data in a snakemake
workflow.

In addition, BidsComponent stores a template ~BidsComponent.path derived from the source dataset. This
path is used by the expand() method to recreate the original filesystem paths.

The real power of the BidsComponent, however, is in creating derived paths based on the original dataset. Using
the :meth`~BidsComponent.expand` method, you can pass new paths with {wildcard} placeholders wrapped
in braces and named according to the entities in the component. These placeholders will be substituted with
the entity values saved in the table, giving you a list of paths the same length as the number of entries in the
component.

BidsComponents are immutable: their values cannot be altered.

Parameters

• name (str) –

• path (str) –

name: str

Name of the component

path: str

Wildcard-filled path that matches the files for this component.

expand(paths=None, / , allow_missing=False, **wildcards)
Safely expand over given paths with component wildcards.

Uses the entity-value combinations found in the dataset to expand over the given paths. If no path is pro-
vided, expands over the component path (thus returning the original files used to create the component).
Extra wildcards can be specified as keyword arguments.

By default, expansion over paths with extra wildcards not accounted for by the component causes an error.
This prevents accidental partial expansion. To allow the passage of extra wildcards without expansion,set
allow_missing to True.

Uses the snakemake expand under the hood.

Parameters

• paths (Iterable[Path | str] | Path | str | None) – Path or list of paths to ex-
pand over. If not provided, the component’s own path will be expanded over.

• allow_missing (bool | str | Iterable[str]) – If True, allow {wildcards} in
the provided paths that are not present either in the component or in the extra provided
**wildcards. These wildcards will be preserved in the returned paths.

• wildcards (str | Iterable[str]) – Each keyword should be the name of an wildcard
in the provided paths. Keywords not found in the path will be ignored. Keywords take
values or lists of values to be expanded over the provided paths.

Return type
list[str]

property entities: MultiSelectDict[str, list[str]]

Component entities and their associated values.

Dictionary where each key is an entity and each value is a list of the unique values found for that entity.
These lists might not be the same length.

58 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

filter(*, regex_search=False, **filters)
Filter component based on provided entity filters.

This method allows you to expand over a subset of your wildcards. This could be useful for extracting
subjects from a specific patient group, running different rules on different aquisitions, and any other reason
you may need to filter your data after the workflow has already started.

Takes entities as keyword arguments assigned to values or list of values to select from the component. Only
columns containing the provided entity-values are kept. If no matches are found, a component with the all
the original entities but with no values will be returned.

Returns a brand new BidsComponent. The original component is not modified.

Parameters

• regex_search (bool | str | Iterable[str]) – Treat filters as regex patterns when
matching with entity-values.

• filters (str | Iterable[str]) – Each keyword should be the name of an entity in
the component. Entities not found in the component will be ignored. Keywords take values
or a list of values to be matched with the component zip_lists

Return type
Self

pformat(max_width=None, tabstop=4)
Pretty-format component.

Parameters

• max_width (int | float | None) – Maximum width of characters for output. If pos-
sible, zip_list table will be elided to fit within this width

• tabstop (int) – Number of spaces for output indentation

Return type
str

property wildcards: MultiSelectDict[str, str]

Wildcards in brace-wrapped syntax.

Dictionary where each key is the name of a wildcard entity, and each value is the Snakemake wildcard used
for that entity.

property zip_lists

Table of unique wildcard groupings for each member in the component.

Dictionary where each key is a wildcard entity and each value is a list of the values found for that entity.
Each of these lists has length equal to the number of images matched for this modality, so they can be zipped
together to get a list of the wildcard values for each file.

7.7. API 59

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Self
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

Legacy BidsComponents properties

The following properties are historical aliases of BidsComponents properties. There are no current plans to deprecate
them, but new code should avoid them.

property BidsComponent.input_zip_lists: snakebids.types.ZipList

Alias of zip_lists.

Dictionary where each key is a wildcard entity and each value is a list of the values found for that entity. Each
of these lists has length equal to the number of images matched for this modality, so they can be zipped together
to get a list of the wildcard values for each file.

property BidsComponent.input_wildcards

Alias of wildcards

Wildcards in brace-wrapped syntax.

property BidsComponent.input_name: str

Alias of name.

Name of the component

property BidsComponent.input_path: str

Alias of path .

Wildcard-filled path that matches the files for this component.

property BidsComponent.input_lists

Alias of entities

Component entities and their associated values.

class snakebids.BidsPartialComponent(*, zip_lists)
Primitive representation of a bids data component.

See BidsComponent for an extended definition of a data component.

BidsPartialComponents are typically derived from a BidsComponent. They do not store path information,
and do not represent real data files. They just have a table of entity-values, typically a subset of those present in
their source BidsComponent.

Despite this, BidsPartialComponents still allow you to expand the data table over new paths, allowing you to
derive paths from your source dataset.

The members of BidsPartialComponent are identical to BidsComponent with the following exceptions:

• No name or path

• expand() must be given a path or list of paths as the first argument

BidsPartialComponents are immutable: their values cannot be altered.

class snakebids.BidsComponentRow(iterable, / , entity)
A single row from a BidsComponent.

This class is derived by indexing a single entity from a BidsComponent or BidsPartialComponent. It should
not be constructed manually.

The class is a subclass of ImmutableList and can thus be treated as a tuple. Indexing it via row[<int>] gives
the entity-value of the selected entry.

60 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

The entities and wildcards directly return the list of unique entity-values or the {brace-wrapped-entity}
name corresponding to the row, rather than a dict.

The expand() and filter() methods behave as they would in a BidsComponent with a single entity.

Parameters

• iterable (Iterable[str]) –

• entity (str) –

property entities: tuple[str, ...]

The unique values associated with the component.

property wildcards: str

The entity name wrapped in wildcard braces.

expand(paths, / , allow_missing=False, **wildcards)
Safely expand over given paths with component wildcards.

Uses the entity-values represented by this row to expand over the given paths. Extra wildcards can be
specified as keyword arguments.

By default, expansion over paths with extra wildcards not accounted for by the component causes an error.
This prevents accidental partial expansion. To allow the passage of extra wildcards without expansion,set
allow_missing to True.

Uses the snakemake expand under the hood.

Parameters

• paths (Iterable[Path | str] | Path | str) – Path or list of paths to expand over

• allow_missing (bool | str | Iterable[str]) – If True, allow {wildcards} in
the provided paths that are not present either in the component or in the extra provided
**wildcards. These wildcards will be preserved in the returned paths.

• wildcards (str | Iterable[str]) – Each keyword should be the name of an wildcard
in the provided paths. Keywords not found in the path will be ignored. Keywords take
values or lists of values to be expanded over the provided paths.

Return type
list[str]

filter(spec=None, / , *, regex_search=False, **filters)
Filter component based on provided entity filters.

Extracts a subset of the entity-values present in the row.

Takes entities as keyword arguments assigned to values or list of values to select from the component. Only
columns containing the provided entity-values are kept. If no matches are found, a component with the all
the original entities but with no values will be returned.

Returns a brand new BidsComponentRow. The original component is not modified.

Parameters

• spec (Iterable[str] | str | None) – Value or iterable of values assocatiated with
the ComponentRow’s entity. Equivalent to specifying .filter(entity=value)

• regex_search (bool | str | Iterable[str]) – Treat filters as regex patterns when
matching with entity-values.

• filters (str | Iterable[str]) – Keyword-value(s) filters as in filter(). Here, the
only valid filter is the entity of the BidsComponentRow; all others will be ignored.

7.7. API 61

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://snakemake.readthedocs.io/en/stable/snakefiles/rules.html#snakefiles-expand
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

Return type
Self

class snakebids.BidsDataset(data, layout=None)
A bids dataset parsed by pybids, organized into BidsComponents.

BidsDatasets are typically generated using generate_inputs(), which reads the pybids_inputs field in your
snakemake config file and, for each entry, creates a BidsComponent using the provided name, wildcards, and
filters.

Individual components can be accessed using bracket-syntax: (e.g. inputs["t1w"]).

Provides access to summarizing information, for instance, the set of all subjects or sessions found in the dataset.

Parameters

• data (Any) –

• layout (BIDSLayout | None) –

layout: BIDSLayout | None

Underlying layout generated from pybids. Note that this will be set to None if custom paths are used to
generate every component

pformat(max_width=None, tabstop=4)
Pretty-format dataset.

Parameters

• max_width (int | float | None) – Maximum width of characters for output. If pos-
sible, zip_list table will be elided to fit within this width

• tabstop (int) – Number of spaces for output indentation

Return type
str

property path: dict[str, str]

Dict mapping BidsComponent names to their paths.

Warning: Deprecated since version 0.8.0: The behaviour of path will change in an upcoming re-
lease, where it will refer instead to the root path of the dataset. Please access component paths using
Dataset[<component_name>].path

property zip_lists: dict[str, snakebids.types.ZipList]

Dict mapping BidsComponent names to their zip_lists.

Warning: Deprecated since version 0.8.0: The behaviour of zip_lists will change in an upcoming
release, where it will refer instead to the consensus of entity groups across all components in the dataset.
Please access component zip_lists using Dataset[<component_name>].zip_lists

property entities: dict[str, snakebids.utils.containers.MultiSelectDict[str,
list[str]]]

Dict mapping BidsComponent names to their entities.

62 Chapter 7. Relevant papers

https://docs.python.org/3/library/typing.html#typing.Self
https://bids-standard.github.io/pybids/generated/bids.layout.BIDSLayout.html#bids.layout.BIDSLayout
https://bids-standard.github.io/pybids/generated/bids.layout.BIDSLayout.html#bids.layout.BIDSLayout
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

Warning: Deprecated since version 0.8.0: The behaviour of entities will change in the 1.0 release,
where it will refer instead to the union of all entity-values across all components in the dataset. Please
access component entity lists using Dataset[<component_name>].entities

property wildcards: dict[str, snakebids.utils.containers.MultiSelectDict[str, str]]

Dict mapping BidsComponent names to their wildcards.

Warning: Deprecated since version 0.8.0: The behaviour of wildcards will change in an upcoming
release, where it will refer instead to the union of all entity-wildcard mappings across all components in
the dataset. Please access component wildcards using Dataset[<component_name>].wildcards

property subjects: list[str]

A list of the subjects in the dataset.

property sessions: list[str]

A list of the sessions in the dataset.

property subj_wildcards: dict[str, str]

The subject and session wildcards applicable to this dataset.

{"subject":"{subject}"} if there is only one session, {"subject": "{subject}", "session":
"{session}"} if there are multiple sessions.

property as_dict: BidsDatasetDict

Get the layout as a legacy dict.

Included primarily for backward compatability with older versions of snakebids, where generate_inputs()
returned a dict rather than the BidsDataset class

Return type
BidsDatasetDict

classmethod from_iterable(iterable, layout=None)
Construct Dataset from iterable of BidsComponents.

Parameters

• iterable (Iterable[BidsComponent]) –

• layout (BIDSLayout | None) –

Return type
BidsDataset

Legacy BidsDataset properties

The following properties are historical aliases of BidsDataset properties. There are no current plans to deprecate
them, but new code should avoid them.

property BidsDataset.input_zip_lists: dict[str,
snakebids.utils.containers.MultiSelectDict[str, list[str]]]

Alias of zip_lists

Dict mapping BidsComponent names to their zip_lists.

7.7. API 63

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://bids-standard.github.io/pybids/generated/bids.layout.BIDSLayout.html#bids.layout.BIDSLayout
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

property BidsDataset.input_wildcards: dict[str,
snakebids.utils.containers.MultiSelectDict[str, str]]

Alias of wildcards

Dict mapping BidsComponent names to their wildcards.

property BidsDataset.input_path: dict[str, str]

Alias of path

Dict mapping BidsComponent names to their paths.

property BidsDataset.input_lists: dict[str,
snakebids.utils.containers.MultiSelectDict[str, list[str]]]

Alias of entities

Dict mapping BidsComponent names to their entities.

class snakebids.BidsDatasetDict

Dict equivalent of BidsInputs, for backwards-compatibility.

7.7.5 BIDS App Bootstrapping

Tools to generate a Snakemake-based BIDS app.

This legacy module once had the core snakebids bidsapp implementation, but now is a simple wrapper around
snakebids.bidsapp with the SnakemakeBidsApp plugin. For new apps, this functionality can be more flexibly
implemented with:

from snakebids import bidsapp, plugins

bidsapp.app([plugins.SnakemakeBidsApp(...)])

class snakebids.app.SnakeBidsApp(snakemake_dir, plugins=_Nothing.NOTHING, skip_parse_args=False,
parser=None, configfile_path=None, snakefile_path=None, config=None,
version=None, args=None)

Snakebids app with config and arguments.

Parameters

• snakemake_dir (str | Path) – Root directory of the snakebids app, containing the config
file and workflow files.

• plugins (list[Callable[[snakebids.app.SnakeBidsApp], None | snakebids.
app.SnakeBidsApp]]) – List of plugins to be registered.

See Using plugins for more info.

• skip_parse_args (bool) – DEPRECATED: no-op.

• parser (Any) – DEPRECATED: no-op. (Historic: Parser including only the arguments
specific to this Snakebids app, as specified in the config file. By default, it will use cre-
ate_parser() from cli.py)

• configfile_path (pathlib.Path | None) – Relative path to config file (relative to
snakemake_dir). By default, autocalculates based on snamake_dir

• snakefile_path (pathlib.Path | None) – Absolute path to the input Snakefile. By
default, autocalculates based on snakemake_dir:

64 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Snakebids, Release 0.13.2.dev2+816f114

join(snakemake_dir, snakefile_path)

• config (Any) – DEPRECATED: no-op. (Historic: Contains all the configuration variables
parsed from the config file and generated during the initialization of the SnakeBidsApp.)

• args (Any) – DEPRECATED: no-op. (Historic: Arguments to use when running the app.
By default, generated using the parser attribute, autopopulated with args from config.py)

• version (str | None) – DEPRECATED: no-op, use version plugin instead

property config

Get config dict (before arguments are parsed).

property parser

Get parser.

run_snakemake()

Run snakemake with the given config, after applying plugins.

Return type
None

create_descriptor(out_file)
Generate a boutiques descriptor for this Snakebids app.

Parameters
out_file (PathLike[str] | str) –

Return type
None

BIDS App

snakebids.bidsapp.app(plugins=None, *, config=None, **argparse_args)
Create a BIDSApp.

Parameters

• plugins (Iterable[_Plugin] | None) – List of snakebids plugins to apply to app (see
Using plugins).

• config (dict[str, Any] | None) – Initial config. Will be updated with parsed argu-
ments from parser and potentially modified by plugins

• **argparse_args (Unpack[ArgumentParserArgs]) – Arguments passed on transpar-
ently to argparse.ArgumentParser.

Return type
_Runner

class snakebids.bidsapp.run._Runner

Runtime manager for BIDS apps.

Manages the parser, config, and plugin relay for snakebids BIDS apps. This class should not be constructed
directly, but built using the bidsapp.app() function.

Parameters

• pm (pluggy.PluginManager) –

• parser (argparse.ArgumentParser) –

7.7. API 65

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser

Snakebids, Release 0.13.2.dev2+816f114

• argument_groups (ArgumentGroups) –

pm: pluggy.PluginManager

Reference to the plugin manager.

parser: argparse.ArgumentParser

Parser used for parsing CLI arguments.

The parser may be manipulated before running action methods to add initial arguments (via parser.
add_argument()) and argument groups (via parser.add_argument_group()). Any argument groups
added will automatically be indexed in argument_groups and made available to plugins via their title.

config: dict[str, Any]

Configuration dictionary for passing data between plugins.

argument_groups: ArgumentGroups

Argument group reference accessible to plugins for organizing CLI arguments.

Any groups added to the parser before the action methods are called will be automatically added, indexed
by their titles. Thus, this object should typically only be used within plugins.

Action Methods

Plugins are only run when calling the action methods. These methods trigger running of the plugins up to a
specified point. For example, build_parser() runs the initialize_config() and add_cli_arguments()
hooks. It can thus be used to build the parser without actually parsing any arguments.

Plugins are always run in the same order. Action methods will always trigger the entire plugin chain up until
their stopping point. Importantly, plugins will only ever be run once, even if action methods are called multiple
times. For example, if build_parser() is called, then parse_args(), the parser will only be built once.

build_parser()

Run plugins affecting the parser without yet parsing arguments.

parse_args(args=None)
Run all plugins and parse arguments.

Parameters
args (list[str] | None) –

run(args=None)

Parameters
args (list[str] | None) –

7.7.6 Path Building

bids Generate bids or bids-like paths
bids_factory Create new bids() functions according to a spec

66 Chapter 7. Relevant papers

https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.PluginManager
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument_group
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

7.7.7 Dataset Creation

generate_inputs Dynamically generate snakemake inputs using py-
bids_inputs.

7.7.8 Dataset Manipulation

filter_list Filter zip_list, including only entries with provided en-
tity values.

get_filtered_ziplist_index Return the indices of all entries matching the filter query.

7.7.9 Data Structures

BidsComponent Representation of a bids data component.
BidsPartialComponent Primitive representation of a bids data component.
BidsComponentRow A single row from a BidsComponent.
BidsDataset A bids dataset parsed by pybids, organized into Bid-

sComponents.
BidsDatasetDict Dict equivalent of BidsInputs, for backwards-

compatibility.

7.7.10 BIDS App Booststrapping

SnakeBidsApp Snakebids app with config and arguments.

7.8 Internals

Note: These types are mostly used internally. The API most users will need is documented in the main API page, but
these are listed here for reference (and some of the main API items link here).

7.8.1 utils

class snakebids.utils.utils.BidsTag

Interface for BidsTag configuration.

snakebids.utils.utils.DEPRECATION_FLAG = '<!DEPRECATED!>'

Sentinel string to mark deprecated config features

7.8. Internals 67

Snakebids, Release 0.13.2.dev2+816f114

snakebids.utils.utils.read_bids_tags(bids_json=None)
Read the bids tags we are aware of from a JSON file.

This is used specifically for compatibility with pybids, since some tag keys are different from how they appear
in the file name, e.g. subject for sub, and acquisition for acq.

Parameters
bids_json (Path | None) – Path to JSON file to use, if not specified will use bids_tags.
json in the snakebids module.

Returns
Dictionary of bids tags

Return type
dict

class snakebids.utils.utils.BidsEntity(entity)
Bids entities with tag and wildcard representations.

Parameters
entity (str) –

property tag: str

Get the bids tag version of the entity.

For entities in the bids spec, the tag is the short version of the entity name. Otherwise, the tag is equal to
the entity.

property match: str

Get regex of acceptable value matches.

If no pattern is associated with the entity, the default pattern is a word with letters and numbers

property before: str

Regex str to search before value in paths.

property after: str

Regex str to search after value in paths.

property regex: Pattern[str]

Complete pattern to match when searching in paths.

Contains three capture groups, the first corresponding to “before”, the second to “value”, and the third to
“after”

property wildcard: str

Get the snakebids {wildcard}.

The wildcard is generally equal to the tag, i.e. the short version of the entity name, except for subject and
session, which use the full name name. This is to ensure compatibility with the bids function

property type: str | None

Get the type of the entity.

Returns None if type unspecified.

classmethod from_tag(tag)
Return the entity associated with the given tag, if found.

If not associated entity is found, the tag itself is used as the entity name

68 Chapter 7. Relevant papers

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/re.html#re.Pattern
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

Snakebids, Release 0.13.2.dev2+816f114

Parameters
tag (str) – tag to search

Return type
BidsEntity

classmethod normalize(item, /)
Return the entity associated with the given item, if found.

Supports both strings and BidsEntities as input. Unlike the constructor, if a tag name is given, the associated
entity will be returned. If no associated entity is found, the tag itself is used as the entity name

Parameters
item (str | BidsEntity) – tag to search

Return type
BidsEntity

snakebids.utils.utils.matches_any(item, match_list, match_func, *args)
Test if item matches any of the items in match_list.

Parameters

• item (_T) – Item to test

• match_list (Iterable[_T]) – Items to compare with

• match_func (BinaryOperator[_T, object]) – Function to test equality. Defaults to
basic equality (==) check

• args (Any) –

Return type
bool

exception snakebids.utils.utils.BidsParseError(path, entity)
Exception raised for errors encountered in the parsing of Bids paths.

Parameters

• path (str) –

• entity (BidsEntity) –

Return type
None

snakebids.utils.utils.property_alias(prop, label=None, ref=None, copy_extended_docstring=False)
Set property as an alias for another property.

Copies the docstring from the aliased property to the alias

Parameters

• prop (property) – Property to alias

• label (str | None) – Text to use in link to aliased property

• ref (str | None) – Name of the property to alias

• copy_extended_docstring (bool) – If True, copies over the entire docstring, in addition
to the summary line

Return type
property

7.8. Internals 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#property
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#property

Snakebids, Release 0.13.2.dev2+816f114

snakebids.utils.utils.surround(s, object_, /)
Surround a string or each string in an iterable with characters.

Parameters

• s (Iterable[str] | str) –

• object_ (str) –

Return type
Iterable[str]

snakebids.utils.utils.zip_list_eq(first, second, /)
Compare two zip lists, allowing the order of columns to be irrelevant.

Parameters

• first (Mapping[str, Sequence[str]]) –

• second (Mapping[str, Sequence[str]]) –

snakebids.utils.utils.get_first_dir(path)
Return the top level directory in a path.

If absolute, return the root. This function is necessary to handle paths with ./, as pathlib.Path filters this out.

Parameters
path (str) –

Return type
str

snakebids.utils.utils.to_resolved_path(path)
Convert provided object into resolved path.

Parameters
path (str | PathLike[str]) –

snakebids.utils.utils.get_wildcard_dict(entities, /)
Turn entity strings into wildcard dicts as {“entity”: “{entity}”}.

Parameters
entities (str | Iterable[str]) –

Return type
dict[str, str]

snakebids.utils.utils.entity_to_wildcard(entities, /)
Turn entity strings into wildcard dicts as {“entity”: “{entity}”}.

Parameters
entities (str | Iterable[str]) –

snakebids.utils.utils.text_fold(text)
Fold a block of text into a single line as in yaml folded multiline string.

Parameters
text (str) –

70 Chapter 7. Relevant papers

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

7.8.2 snakemake_io

File globbing functions based on snakemake.io library.

snakebids.utils.snakemake_io.regex(filepattern)
Build Snakebids regex based on the given file pattern.

Parameters
filepattern (str) –

Return type
str

snakebids.utils.snakemake_io.glob_wildcards(pattern, files=None, followlinks=False)
Glob the values of wildcards by matching a pattern to the filesystem.

Returns a zip_list of field names with matched wildcard values.

Parameters

• pattern (str | Path) – Path including wildcards to glob on the filesystem.

• files (Sequence[str | Path] | None) – Files from which to glob wildcards. If None
(default), the directory corresponding to the first wildcard in the pattern is walked, and wild-
cards are globbed from all files.

• followlinks (bool) – Whether to follow links when globbing wildcards.

Return type
snakebids.types.ZipList

snakebids.utils.snakemake_io.update_wildcard_constraints(pattern, wildcard_constraints,
global_wildcard_constraints)

Update wildcard constraints.

Parameters

• pattern (str) – Pattern on which to update constraints.

• wildcard_constraints (dict) – Dictionary of wildcard:constraint key-value pairs.

• global_wildcard_constraints (dict) – Dictionary of wildcard:constraint key-value
pairs.

Return type
str

7.8.3 exceptions

exception snakebids.exceptions.ConfigError(msg)
Exception raised for errors with the Snakebids config.

Parameters
msg (str) –

Return type
None

exception snakebids.exceptions.RunError(msg, *args)
Exception raised for errors in generating and running the snakemake workflow.

Parameters

7.8. Internals 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

• msg (str) –

• args (object) –

Return type
None

exception snakebids.exceptions.PybidsError

Exception raised when pybids encounters a problem.

exception snakebids.exceptions.DuplicateComponentError(duplicated_names)
Raised when a dataset is constructed from components with the same name.

Parameters
duplicated_names (Iterable[str]) –

exception snakebids.exceptions.MisspecifiedCliFilterError(misspecified_filter)
Raised when a magic CLI filter cannot be parsed.

Parameters
misspecified_filter (str) –

exception snakebids.exceptions.SnakebidsPluginError

Exception raised when a Snakebids plugin encounters a problem.

7.8.4 types

class snakebids.types.FilterSpec

Optional filter specification allowing regex matching.

class snakebids.types.InputConfig

Configuration for a single bids component.

filters: Mapping[str, str | bool | Sequence[str | bool] | FilterSpec]

Filters to pass on to BIDSLayout.get()

Each key refers to the name of an entity. Values may take the following forms:

• string: Restricts the entity to the exact string given

• bool: True requires the entity to be present (with any value). False requires the entity to be absent.

• list [str]: List of allowable values the entity may take.

In addition, a few special filters may be added which carry different meanings:

• use_regex: True: If present, all strings will be interpreted as regex

• scope: Restricts the scope of the component. It may take the following values:

– "all": search everything (default behaviour)

– "raw": only search the top-level raw dataset

– "derivatives": only search derivative datasets

– <PipelineName>: only search derivative datasets with a matching pipeline
name

72 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://bids-standard.github.io/pybids/generated/bids.layout.BIDSLayout.html#bids.layout.BIDSLayout
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

wildcards: list[str]

Wildcards to allow in the component.

Each value in the list refers to the name of an entity. If the entity is present, the generated BidsComponent
will have values of this entity substituted for wildcards in the path , and the entity will be included in the
zip_lists.

If the entity is not found, it will be ignored.

class snakebids.types.BinaryOperator(*args, **kwargs)
Callables that act on two objects of identical type.

class snakebids.types.Expandable(*args, **kwargs)
Protocol represents objects that hold an entity table and can expand over a path.

Includes BidsComponent, BidsPartialComponent, and BidsComponentRow

class snakebids.types.MultiSelectable(*args, **kwargs)
Mappings supporting selection with multiple keys.

class snakebids.types.OptionalFilterType(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Sentinel value for CLI OPTIONAL filtering.

This is necessary because None means no CLI filter was added.

snakebids.types.InputsConfig

Configuration for all bids components to be parsed in the app

Should be defined in the config.yaml file, by convention in a key called ‘pybids_inputs’

alias of Dict[str, InputConfig]

snakebids.types.ZipList

Multiselectable dict mapping entity names to possible values.

All lists must be the same length. Entries in each list with the same index correspond to the same path. Thus,
the ZipList can be read like a table, where each row corresponds to an entity, and each “column” corresponds to
a path.

alias of MultiSelectDict[str, List[str]]

snakebids.types.ZipListLike

Generic form of a ZipList

Useful for typing functions that won’t mutate the ZipList or use MultiSelectDict capabilities. Like ZipList,
each Sequence must be the same length, and values in each with the same index must correspond to the same
path.

alias of Mapping[str, Sequence[str]]

class snakebids.types.ZipList

class snakebids.types.InputsConfig

class snakebids.types.ZipListLike

7.8. Internals 73

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

7.9 Plugins

Note: This page consists of plugins distributed with Snakebids. Externally developed and distributed plugins may be
missing from this page.

7.9.1 Core

These plugins provide essential bids app features and will be needed by most apps.

class snakebids.plugins.BidsArgs(argument_group='', bids_dir=True, output_dir=True,
analysis_level=True, analysis_level_choices=None,
analysis_level_choices_config=None, participant_label=True,
exclude_participant_label=True, derivatives=True)

Add basic BIDSApp arguments.

Parameters

• argument_group (str) – Specify title of the group to which arguments should be added

• bids_dir (bool) – Indicate if bids_dir (first bids argument) should be defined

• output_dir (bool) – Indicate if output_dir (second bids argument) should be defined

• analysis_level (bool) – Indicate if output_dir (third bids argument) should be defined

• analysis_level_choices (list[str] | None) – List of valid analysis levels

• analysis_level_choices_config (str | None) – Configuration key containing anal-
ysis level choices

• participant_label (bool) – Indicate if participant_label should be defined. Used
to filter specific subjects for processesing

• exclude_participant_label (bool) – Indicate if exclude_participant_label
should be defined. Used to excluded specific subjects from processesing

• derivatives (bool) – Indicate if derivatives should be defined. Used to allow auto-
matic derivative indexing or specify paths to derivatives.

CLI Arguments

All arguments are added by default, but can be disabled using their respective parameters. Additinally, arguments
can be directly overriden by adding arguments to the parser before the plugin runs, using the following dests:

• bids_dir: The input bids directory

• output_dir: The output bids directory

• analysis_level: The level of analysis to perform (usually participant or group)

• participant_label: Collection of subject labels to include in analysis

• exclude_participant_label: Collection of subject labels to exclude from analysis

• derivatives: Collection of derivative folder paths to include in bids indexing.

74 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Snakebids, Release 0.13.2.dev2+816f114

Note that only the dest field matters when overriding arguments, all other feature, including positional versus
optional, are incidental. Other than adding arguments for the above dests, BidsArgs makes no assumptions
about these arguments. Other plugins, however, may expect to find data in the parser namespace or config
corresponding to the dest names.

Warning: Overriding just one or two of the positional arguments may alter the order, preventing the app
from being called correctly. Thus, if any of the positional args are being overriden, they all should be.

Analysis levels

Valid analysis levels can be set using the analysis_level_choices key or the
analysis_level_choices_config key. If both are set, an error will be raised. If neither are set, the
config will first be searched for the analysis_levels key. If this is not found, analysis levels will be set to
["participant", "group"].

add_cli_arguments(parser, argument_groups, config)
Add arguments from config.

Parameters

• parser (argparse.ArgumentParser) –

• argument_groups (ArgumentGroups) –

• config (dict[str, Any]) –

class snakebids.plugins.ComponentEdit(components_key='pybids_inputs')
Use CLI arguments to edit the filters, wildcards, and paths of components.

Arguments are added based on the components specified in config. For each component, a
--filter-<comp_name>, --wildcards-<comp_name>, and a --path-<comp_name> argument will be added
to the CLI. After parsing, these arguments are read and used to update the original component specification within
config.

CLI arguments created by this plugin cannot be overriden.

Parameters
components_key (str) – Key of component specification within the config dictionary.

add_cli_arguments(parser, config)
Add filter, wildcard, and path override arguments for each component.

Parameters

• parser (ArgumentParser) –

• config (dict[str, Any]) –

update_cli_namespace(namespace, config)
Apply provided overrides to the component configuration.

Parameters

• namespace (dict[str, Any]) –

• config (dict[str, Any]) –

7.9. Plugins 75

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Snakebids, Release 0.13.2.dev2+816f114

class snakebids.plugins.CliConfig(cli_key='parse_args')
Configure CLI arguments directly in config.

Arguments are provided in config in a dictionary stored under cli_key. Each entry maps the name of the
argument to a set of valid arguments for add_argument().

This plugin will attempt to be the first to add arguments, and thus can be used to override arguments from other
compatible plugins, such as BidsArgs

Parameters
cli_key (str) – Key of dict containing arguments

Example

parse_args:
--tunable-parameter:

help: |
A parameter important to the analysis that you can be set from the
commandline. If not set, a sensible default will be used

default: 5
type: float

--alternate-mode:
help: |

A flag activating a secondary feature of the workflow
action: store_true

--derivatives:
help: |

An alternate help message for --derivatives, which will override
the help message from argument given by ``BidsArgs``. Note that we
must again specify the ``nargs`` and ``type`` for the param

type: Path
nargs: "*"

add_cli_arguments(parser, config)
Add arguments from config.

Parameters

• parser (ArgumentParser) –

• config (dict[str, Any]) –

class snakebids.plugins.Pybidsdb(argument_group=None)
Add CLI parameters to specify and reset a pybids database.

Parameters
argument_group (str | None) – Specify title of the group to which arguments should be
added

76 Chapter 7. Relevant papers

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.add_argument
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

Snakebids, Release 0.13.2.dev2+816f114

CLI Arguments

Two arguments are added to the CLI. These can be overriden by adding arguments with corresponding dests
before this plugin is run:

• plugins.pybidsdb.dir: (Path) Path of the database

• plugins.pybidsdb.reset: (bool) Boolean indicating the database should be reset.

After parsing, the above dests will be moved into config under the following names:

• plugins.pybidsdb.dir→ pybidsdb_dir

• plugins.pybidsdb.reset→ pybidsdb_reset

This plugin only handles the CLI arguments, it does not do any actions with the database. The above config
entries can be consumed by downstream processes.

add_cli_arguments(parser, argument_groups)
Add database parameters.

Parameters

• parser (argparse.ArgumentParser) –

• argument_groups (ArgumentGroups) –

update_cli_namespace(namespace, config)
Assign database parameters to config.

Parameters

• namespace (dict[str, Any]) –

• config (dict[str, Any]) –

7.9.2 Utility

These plugins add additional features that may be helpful to most bids apps.

class snakebids.plugins.BidsValidator(raise_invalid_bids=True)
Perform validation of a BIDS dataset using the bids-validator.

If the dataset is not valid according to the BIDS specifications, an InvalidBidsError is raised.

Parameters
raise_invalid_bids (bool) – Flag to indicate whether InvalidBidsError should be raised if
BIDS validation fails. Default to True.

finalize_config(config)
Perform BIDS validation of dataset.

Raises
InvalidBidsError – Raised when the input BIDS directory does not pass validation with
the bids-validator

Parameters
config (dict[str, Any]) –

Return type
None

7.9. Plugins 77

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Snakebids, Release 0.13.2.dev2+816f114

7.9.3 Workflow Integrations

These plugins enable integrations with specific workflow managers.

class snakebids.plugins.SnakemakeBidsApp(snakemake_dir, *, configfile_path=_Nothing.NOTHING,
configfile_outpath=None,
snakefile_path=_Nothing.NOTHING)

Snakebids app with config and arguments.

Loads the BidsArgs, CliConfig, Pybidsdb, and ComponentEdit plugins as dependencies.

Parameters

• snakemake_dir (str | Pathlike[str]) – Root directory of the snakebids app, contain-
ing the config file and workflow files.

• configfile_path (pathlib.Path | None) – Path of config file. By default, looks for
config.yaml, config.json, snakebids.yaml, or snakebids.json either within the
snakemake_dir or within snakemake_dir/config

• configfile_outpath (pathlib.Path | None) – Path of output configfile that will be
consumed by the snakemake workflow. This is only necessary if the input configfile is not
within the snakemake directory. If given, it should be the same as the path specified under
configfile: ...` within the ``Snakefile

• snakefile_path (pathlib.Path) – Absolute path to the input Snakefile. By default,
looks for Snakefile within the snakemake_dir or snakemake_dir/workflow

cwd: Path

The current working directory for running snakemake.

This is where the .snakemake metadata folder will be placed.

force_output: bool

Allow specifying outputs in unrecognized, non-empty directories.

After the first run, a .snakebids file will be created in the directory to mark the directory as safe for future
runs.

classmethod create_empty()

Create empty instance of plugin.

initialize_config(config)
Read config file and load into config dict.

Parameters
config (dict[str, Any]) –

add_cli_arguments(parser)
Add snakemake help and force_output arguments.

Parameters
parser (ArgumentParser) –

handle_unknown_args(args, config)
Add snakemake args to config.

Parameters

• args (list[str]) –

• config (dict[str, Any]) –

78 Chapter 7. Relevant papers

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Snakebids, Release 0.13.2.dev2+816f114

update_cli_namespace(namespace, config)
Resolve Paths within the namespace and set target.

Parameters

• namespace (dict[str, Any]) –

• config (dict[str, Any]) –

finalize_config(config)
Perform final steps for snakemake workflows.

Expects to find output_dir in config as a fully resolved Path

• Modify output_dir to output/results if output is set to the app dir

• Set self.cwd

• Write config file into output dir

• Add snakemake specific parameters to config

Parameters
config (dict[str, Any]) –

run(config)
Run snakemake with the given config, after applying plugins.

Parameters
config (dict[str, Any]) –

7.9.4 Plugin Development

snakebids.bidsapp.hookimpl()

Marker to be imported and used in plugins (and for own implementations).

See pluggy.HookimplMarker() for more information. Its parameters are represented here fore reference.

Parameters

• optionalhook – If True, a missing matching hook specification will not result in an error
(by default it is an error if no matching spec is found). See Optional validation.

• tryfirst – If True, this hook implementation will run as early as possible in the chain of
N hook implementations for a specification. See Call time order.

• trylast – If True, this hook implementation will run as late as possible in the chain of N
hook implementations for a specification. See Call time order.

• wrapper – If True (“new-style hook wrapper”), the hook implementation needs to execute
exactly one yield. The code before the yield is run early before any non-hook-wrapper
function is run. The code after the yield is run after all non-hook-wrapper functions have
run. The yield receives the result value of the inner calls, or raises the exception of inner
calls (including earlier hook wrapper calls). The return value of the function becomes the
return value of the hook, and a raised exception becomes the exception of the hook. See
Wrappers.

• hookwrapper – If True (“old-style hook wrapper”), the hook implementation needs to exe-
cute exactly one yield. The code before the yield is run early before any non-hook-wrapper
function is run. The code after the yield is run after all non-hook-wrapper function have run

7.9. Plugins 79

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.HookimplMarker
https://pluggy.readthedocs.io/en/stable/index.html#optionalhook
https://pluggy.readthedocs.io/en/stable/index.html#callorder
https://pluggy.readthedocs.io/en/stable/index.html#callorder
https://pluggy.readthedocs.io/en/stable/index.html#hookwrappers

Snakebids, Release 0.13.2.dev2+816f114

The yield receives a pluggy.Result object representing the exception or result outcome
of the inner calls (including earlier hook wrapper calls). This option is mutually exclusive
with wrapper. See Old-style wrappers.

• specname – If provided, the given name will be used instead of the function name when
matching this hook implementation to a hook specification during registration. See Hook-
spec name matching.

Specs

The spec contains the hooks recognized by snakebids. Each spec has a specific function name and a set of available
arguments, and will be called at a specific time during app initialization.

snakebids.bidsapp.hookspecs.initialize_config(config)
Modify config dict before creation of CLI parser.

Config should be modified in place.

Parameters
config (dict[str, Any]) – Possibly empty dictionary of configuration values

snakebids.bidsapp.hookspecs.add_cli_arguments(parser, config, argument_groups)
Add any number of arguments to the argument parser.

If special intervention is not made in the update_cli_namespace() hook, argument data will be automatically
merged into config following argument parsing under the argument dest. To avoid naming conflicts, plugins
should explicitly set the dest of each argument they add to plugins.<plugin_name>.<argument_name>.

Parameters

• parser (argparse.ArgumentParser) – BIDS app CLI parser

• config (dict[str, Any]) – Configuration dictionary preloaded with values from
initialize_config()

• argument_groups (ArgumentGroups) –

snakebids.bidsapp.hookspecs.get_argv(argv, config)
Set or modify the CLI parameters that will be parsed by the parser.

Parameters

• argv (list[str]) –

• config (dict[str, Any]) –

Return type
list[str] | None

snakebids.bidsapp.hookspecs.handle_unknown_args(args, config)
If parse_known_args enabled, handle unknown arguments.

Parameters

• args (list[str]) – List of unknown arguments parsed by the argparse parser

• config (dict[str, Any]) – Configuration dictionary

80 Chapter 7. Relevant papers

https://pluggy.readthedocs.io/en/stable/api_reference.html#pluggy.Result
https://pluggy.readthedocs.io/en/stable/index.html#old-style-hookwrappers
https://pluggy.readthedocs.io/en/stable/index.html#specname
https://pluggy.readthedocs.io/en/stable/index.html#specname
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Snakebids, Release 0.13.2.dev2+816f114

snakebids.bidsapp.hookspecs.update_cli_namespace(namespace, config)
Interact with argument parsing results before they are merged into config.

The namespace contains the results from parse_args() (equivalent to vars(Namespace)). Any modifica-
tions made to this dict will be carried forward in app initialization. For instance, if an entry is deleleted from
namespace, it will not be available to downstream plugins or be copied into config.

Parameters

• namespace (dict[str, Any]) – the dictionary of values derived from the argparse names-
pace

• config (dict[str, Any]) – Configuration dictionary

snakebids.bidsapp.hookspecs.finalize_config(config)
Perform modifications to the config following merging of parsed arguments.

Parameters
config (dict[str, Any]) – Configuration dictionary

snakebids.bidsapp.hookspecs.run(config)
Consume configuration and perform actions.

This hook runs directly after finalize_config(). The config should not be modified.

Parameters
config (dict[str, Any]) – The finalized configuration dictionary

7.9. Plugins 81

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser.parse_args
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any

Snakebids, Release 0.13.2.dev2+816f114

82 Chapter 7. Relevant papers

PYTHON MODULE INDEX

s
snakebids, 54
snakebids.app, 64
snakebids.bidsapp, 65
snakebids.bidsapp.hookspecs, 80
snakebids.exceptions, 71
snakebids.paths.specs, 50
snakebids.types, 72
snakebids.utils.snakemake_io, 71
snakebids.utils.utils, 67

83

Snakebids, Release 0.13.2.dev2+816f114

84 Python Module Index

INDEX

Symbols
_Runner (class in snakebids.bidsapp.run), 65

A
add_cli_arguments() (in module snake-

bids.bidsapp.hookspecs), 80
add_cli_arguments() (snakebids.plugins.BidsArgs

method), 75
add_cli_arguments() (snakebids.plugins.CliConfig

method), 76
add_cli_arguments() (snake-

bids.plugins.ComponentEdit method), 75
add_cli_arguments() (snakebids.plugins.Pybidsdb

method), 77
add_cli_arguments() (snake-

bids.plugins.SnakemakeBidsApp method),
78

after (snakebids.utils.utils.BidsEntity property), 68
app() (in module snakebids.bidsapp), 65
argument_groups (snakebids.bidsapp.run._Runner at-

tribute), 66
as_dict (snakebids.BidsDataset property), 63

B
before (snakebids.utils.utils.BidsEntity property), 68
bids() (in module snakebids), 47
bids_factory() (in module snakebids), 49
BidsArgs (class in snakebids.plugins), 74
BidsComponent (class in snakebids), 57
BidsComponentRow (class in snakebids), 60
BidsDataset (class in snakebids), 62
BidsDatasetDict (class in snakebids), 64
BidsEntity (class in snakebids.utils.utils), 68
BidsFunction (class in snakebids), 51
BidsParseError, 69
BidsPartialComponent (class in snakebids), 60
BidsPathEntitySpec (class in snakebids.paths), 51
BidsPathSpec (class in snakebids.paths), 51
BidsTag (class in snakebids.utils.utils), 67
BidsValidator (class in snakebids.plugins), 77
BinaryOperator (class in snakebids.types), 73

build_parser() (snakebids.bidsapp.run._Runner
method), 66

C
CliConfig (class in snakebids.plugins), 75
ComponentEdit (class in snakebids.plugins), 75
config (snakebids.app.SnakeBidsApp property), 65
config (snakebids.bidsapp.run._Runner attribute), 66
ConfigError, 71
create_descriptor() (snakebids.app.SnakeBidsApp

method), 65
create_empty() (snake-

bids.plugins.SnakemakeBidsApp class method),
78

cwd (snakebids.plugins.SnakemakeBidsApp attribute), 78

D
DEPRECATION_FLAG (in module snakebids.utils.utils), 67
dir (snakebids.paths.BidsPathEntitySpec attribute), 51
DuplicateComponentError, 72

E
entities (snakebids.BidsComponent property), 58
entities (snakebids.BidsComponentRow property), 61
entities (snakebids.BidsDataset property), 62
entity (snakebids.paths.BidsPathEntitySpec attribute),

51
entity_to_wildcard() (in module snake-

bids.utils.utils), 70
expand() (snakebids.BidsComponent method), 58
expand() (snakebids.BidsComponentRow method), 61
Expandable (class in snakebids.types), 73

F
filter() (snakebids.BidsComponent method), 58
filter() (snakebids.BidsComponentRow method), 61
filter_list() (in module snakebids), 54
filters (snakebids.types.InputConfig attribute), 72
FilterSpec (class in snakebids.types), 72
finalize_config() (in module snake-

bids.bidsapp.hookspecs), 81

85

Snakebids, Release 0.13.2.dev2+816f114

finalize_config() (snakebids.plugins.BidsValidator
method), 77

finalize_config() (snake-
bids.plugins.SnakemakeBidsApp method),
79

force_output (snakebids.plugins.SnakemakeBidsApp
attribute), 78

from_iterable() (snakebids.BidsDataset class
method), 63

from_tag() (snakebids.utils.utils.BidsEntity class
method), 68

G
generate_inputs() (in module snakebids), 51
get_argv() (in module snakebids.bidsapp.hookspecs),

80
get_filtered_ziplist_index() (in module snake-

bids), 56
get_first_dir() (in module snakebids.utils.utils), 70
get_wildcard_dict() (in module snake-

bids.utils.utils), 70
glob_wildcards() (in module snake-

bids.utils.snakemake_io), 71

H
handle_unknown_args() (in module snake-

bids.bidsapp.hookspecs), 80
handle_unknown_args() (snake-

bids.plugins.SnakemakeBidsApp method),
78

I
initialize_config() (in module snake-

bids.bidsapp.hookspecs), 80
initialize_config() (snake-

bids.plugins.SnakemakeBidsApp method),
78

input_lists (snakebids.BidsComponent property), 60
input_lists (snakebids.BidsDataset property), 64
input_name (snakebids.BidsComponent property), 60
input_path (snakebids.BidsComponent property), 60
input_path (snakebids.BidsDataset property), 64
input_wildcards (snakebids.BidsComponent prop-

erty), 60
input_wildcards (snakebids.BidsDataset property), 63
input_zip_lists (snakebids.BidsComponent prop-

erty), 60
input_zip_lists (snakebids.BidsDataset property), 63
InputConfig (class in snakebids.types), 72
InputsConfig (class in snakebids.types), 73

L
latest() (in module snakebids.paths.specs), 51
layout (snakebids.BidsDataset attribute), 62

M
match (snakebids.utils.utils.BidsEntity property), 68
matches_any() (in module snakebids.utils.utils), 69
MisspecifiedCliFilterError, 72
module

snakebids, 54
snakebids.app, 64
snakebids.bidsapp, 65
snakebids.bidsapp.hookspecs, 80
snakebids.exceptions, 71
snakebids.paths.specs, 50
snakebids.types, 72
snakebids.utils.snakemake_io, 71
snakebids.utils.utils, 67

MultiSelectable (class in snakebids.types), 73

N
name (snakebids.BidsComponent attribute), 58
normalize() (snakebids.utils.utils.BidsEntity class

method), 69

O
OptionalFilterType (class in snakebids.types), 73

P
parse_args() (snakebids.bidsapp.run._Runner

method), 66
parser (snakebids.app.SnakeBidsApp property), 65
parser (snakebids.bidsapp.run._Runner attribute), 66
path (snakebids.BidsComponent attribute), 58
path (snakebids.BidsDataset property), 62
pformat() (snakebids.BidsComponent method), 59
pformat() (snakebids.BidsDataset method), 62
pm (snakebids.bidsapp.run._Runner attribute), 66
property_alias() (in module snakebids.utils.utils), 69
Pybidsdb (class in snakebids.plugins), 76
PybidsError, 72

R
read_bids_tags() (in module snakebids.utils.utils), 67
regex (snakebids.utils.utils.BidsEntity property), 68
regex() (in module snakebids.utils.snakemake_io), 71
run() (in module snakebids.bidsapp.hookspecs), 81
run() (snakebids.bidsapp.run._Runner method), 66
run() (snakebids.plugins.SnakemakeBidsApp method),

79
run_snakemake() (snakebids.app.SnakeBidsApp

method), 65
RunError, 71

S
sessions (snakebids.BidsDataset property), 63
set_bids_spec() (in module snakebids), 49

86 Index

Snakebids, Release 0.13.2.dev2+816f114

snakebids
module, 54

snakebids.app
module, 64

snakebids.bidsapp
module, 65

snakebids.bidsapp.hookimpl() (in module snake-
bids.plugins), 79

snakebids.bidsapp.hookspecs
module, 80

snakebids.exceptions
module, 71

snakebids.paths.specs
module, 50

snakebids.types
module, 72

snakebids.utils.snakemake_io
module, 71

snakebids.utils.utils
module, 67

SnakeBidsApp (class in snakebids.app), 64
SnakebidsPluginError, 72
SnakemakeBidsApp (class in snakebids.plugins), 78
subj_wildcards (snakebids.BidsDataset property), 63
subjects (snakebids.BidsDataset property), 63
surround() (in module snakebids.utils.utils), 69

T
tag (snakebids.paths.BidsPathEntitySpec attribute), 51
tag (snakebids.utils.utils.BidsEntity property), 68
text_fold() (in module snakebids.utils.utils), 70
to_resolved_path() (in module snakebids.utils.utils),

70
type (snakebids.utils.utils.BidsEntity property), 68

U
update_cli_namespace() (in module snake-

bids.bidsapp.hookspecs), 80
update_cli_namespace() (snake-

bids.plugins.ComponentEdit method), 75
update_cli_namespace() (snake-

bids.plugins.Pybidsdb method), 77
update_cli_namespace() (snake-

bids.plugins.SnakemakeBidsApp method),
78

update_wildcard_constraints() (in module snake-
bids.utils.snakemake_io), 71

V
v0_0_0() (in module snakebids.paths.specs), 50
v0_11_0() (in module snakebids.paths.specs), 50

W
wildcard (snakebids.utils.utils.BidsEntity property), 68

wildcards (snakebids.BidsComponent property), 59
wildcards (snakebids.BidsComponentRow property), 61
wildcards (snakebids.BidsDataset property), 63
wildcards (snakebids.types.InputConfig attribute), 72

Z
zip_list_eq() (in module snakebids.utils.utils), 70
zip_lists (snakebids.BidsComponent property), 59
zip_lists (snakebids.BidsDataset property), 62
ZipList (class in snakebids.types), 73
ZipListLike (class in snakebids.types), 73

Index 87

	Features
	Installation
	Usage
	Contributing
	License
	Acknowledgements
	Relevant papers
	Why use snakebids?
	Tutorial
	Getting started
	Installation
	Getting the dataset

	Part I: Snakemake
	Step 0: a basic non-generic workflow
	Step 1: adding wildcards
	Step 2: adding a params function
	Step 3: adding a target rule
	Step 4: adding a config file

	Part II: Snakebids
	Step 5: the bids() function
	Step 6: parsing the BIDS dataset
	Step 7: using input wildcards
	Step 8: creating a command-line executable

	Bids Function
	Specs

	Bids Apps
	Configuration
	Config Variables
	pybids_inputs
	Filters
	Wildcards

	pybidsdb_dir
	pybidsdb_reset
	analysis_levels
	targets_by_analysis_level
	parse_args
	debug
	derivatives

	Workflows
	Snakebids workflow features
	Accessing the underlying pybids dataset

	Plugins
	Using plugins
	Dependencies

	Creating plugins
	Specifying dependencies

	Running Snakebids
	Workflow mode

	Migrations
	0.5 to 0.8+
	1. Assign generate_inputs() to a variable called inputs
	2. Change references to config
	3. Update attribute names into modern forms
	4. Switch to expand() method

	0.7 to 0.8+
	Default return of generate_inputs()
	Properties of BidsDataset
	New expand() method

	0.11 to 0.12+

	API
	Path Building
	Specs
	Types

	Dataset Creation
	Dataset Manipulation
	Data Structures
	BIDS App Bootstrapping
	BIDS App
	Action Methods

	Path Building
	Dataset Creation
	Dataset Manipulation
	Data Structures
	BIDS App Booststrapping

	Internals
	utils
	snakemake_io
	exceptions
	types

	Plugins
	Core
	CLI Arguments
	Analysis levels
	CLI Arguments

	Utility
	Workflow Integrations
	Plugin Development
	Specs

	Python Module Index
	Index

